Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the antiquity of pots: New method developed for dating archaeological pottery

30.09.2003


The contents of ancient pottery could help archaeologists resolve some longstanding disputes in the world of antiquities, thanks to scientists at Britain’s University of Bristol. The researchers have developed the first direct method for dating pottery by examining animal fats preserved inside the ceramic walls.



Archaeologists have long dated sites by the visual appearance of pottery fragments found around the site. The new analytical technique will allow archaeologists to more accurately determine the age of pottery and, by extension, the age of associated artifacts and sites. The research builds on recent work that has shed light on the types and uses of commodities contained within the vessels.

The findings will appear in the Sept. 30 edition of Analytical Chemistry, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society.


Pottery is essential for classifying archaeological sites. Organic materials, such as wood and bone, can easily be dated using radiocarbon techniques, but they aren’t always available or reliable. Wood tends to decompose over time, and animals often dig up bones and move them around a site. Ceramics, however, have a long and stable lifespan.

"If you go to a site and you find large amounts of Roman pottery, then you know you’ve got a Roman site," says Richard Evershed, Ph.D., a chemist at the University of Bristol and lead author of the paper. "Later pottery, such as Roman, is relatively easy to date from its appearance, but earlier pottery can be much harder because of its rough and ready appearance. That’s where the appeal of having a technique like this comes in."

Until now, there has been no direct method for chemically dating pottery. Previous researchers have analyzed residues found on the surfaces of pots, but these residues have been in direct contact with the soil and are likely to be contaminated, according to Evershed.

In earlier research, Evershed and his colleagues examined organic residues from pottery from Neolithic, Bronze Age and Iron Age sites in Britain, and they found the first direct evidence that people were dairying as early as 6,000 years ago. During this analysis, they realized that lipids, or animal fats, are preserved in large enough quantities to be dated with radiocarbon methods. The prominence of animal fats at these sites is consistent with their wide range of potential uses in antiquity — as lubricants, waterproofing agents, cosmetics, ointments, perfumes, varnishes, etc.

"Pottery is unusual in that you get these lipids absorbed into the fabric, because most interesting pottery of any respectable age is unglazed," Evershed says. "We’re taking a piece of pot and grinding it to a powder, and then extracting lipid that’s penetrated right down into the fabric." The researchers used a technique called preparative capillary gas chromatography to isolate the lipids, then they radiocarbon dated purified compounds with an accelerator mass spectrometer located at the Oxford University Radiocarbon Accelerator Unit.

The researchers analyzed 15 pieces of pottery — mostly cooking jars and bowls — ranging in age from 4,000 B.C. to the 15th Century A.D. They assigned a date using the new method and then compared their findings to the historical date verified previously by association with organic artifacts. In all cases, their results were in good agreement with the sample history.

The analysis requires partial destruction of the artifacts, but the researchers didn’t run into much opposition along the way. "Museum curators require some convincing before they let you take their pottery away," Evershed says. "However, most of this pottery is not display quality material, but is stored in bags and boxes in the museum archive."

Evershed and his colleagues also plan to use the technique to study mummies. "A lot of Egyptian mummies were exported out of Egypt by the Victorians, and they often applied modern treatments to preserve them," Evershed says. The researchers hope to distinguish between a modern treatment and the original embalming agent.

The method could eventually be used for a variety of other analyses. "Potentially, you could date any other material that has preserved organic compounds," like pitches from wood products or collagen from bones, according to Evershed. "You could even isolate individual amino acids by this preparative GC approach, but no one’s tried that. That’s the next step."

Allison Byrum | EurekAlert!
Further information:
http://www.acs.org/

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>