Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the antiquity of pots: New method developed for dating archaeological pottery

30.09.2003


The contents of ancient pottery could help archaeologists resolve some longstanding disputes in the world of antiquities, thanks to scientists at Britain’s University of Bristol. The researchers have developed the first direct method for dating pottery by examining animal fats preserved inside the ceramic walls.



Archaeologists have long dated sites by the visual appearance of pottery fragments found around the site. The new analytical technique will allow archaeologists to more accurately determine the age of pottery and, by extension, the age of associated artifacts and sites. The research builds on recent work that has shed light on the types and uses of commodities contained within the vessels.

The findings will appear in the Sept. 30 edition of Analytical Chemistry, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society.


Pottery is essential for classifying archaeological sites. Organic materials, such as wood and bone, can easily be dated using radiocarbon techniques, but they aren’t always available or reliable. Wood tends to decompose over time, and animals often dig up bones and move them around a site. Ceramics, however, have a long and stable lifespan.

"If you go to a site and you find large amounts of Roman pottery, then you know you’ve got a Roman site," says Richard Evershed, Ph.D., a chemist at the University of Bristol and lead author of the paper. "Later pottery, such as Roman, is relatively easy to date from its appearance, but earlier pottery can be much harder because of its rough and ready appearance. That’s where the appeal of having a technique like this comes in."

Until now, there has been no direct method for chemically dating pottery. Previous researchers have analyzed residues found on the surfaces of pots, but these residues have been in direct contact with the soil and are likely to be contaminated, according to Evershed.

In earlier research, Evershed and his colleagues examined organic residues from pottery from Neolithic, Bronze Age and Iron Age sites in Britain, and they found the first direct evidence that people were dairying as early as 6,000 years ago. During this analysis, they realized that lipids, or animal fats, are preserved in large enough quantities to be dated with radiocarbon methods. The prominence of animal fats at these sites is consistent with their wide range of potential uses in antiquity — as lubricants, waterproofing agents, cosmetics, ointments, perfumes, varnishes, etc.

"Pottery is unusual in that you get these lipids absorbed into the fabric, because most interesting pottery of any respectable age is unglazed," Evershed says. "We’re taking a piece of pot and grinding it to a powder, and then extracting lipid that’s penetrated right down into the fabric." The researchers used a technique called preparative capillary gas chromatography to isolate the lipids, then they radiocarbon dated purified compounds with an accelerator mass spectrometer located at the Oxford University Radiocarbon Accelerator Unit.

The researchers analyzed 15 pieces of pottery — mostly cooking jars and bowls — ranging in age from 4,000 B.C. to the 15th Century A.D. They assigned a date using the new method and then compared their findings to the historical date verified previously by association with organic artifacts. In all cases, their results were in good agreement with the sample history.

The analysis requires partial destruction of the artifacts, but the researchers didn’t run into much opposition along the way. "Museum curators require some convincing before they let you take their pottery away," Evershed says. "However, most of this pottery is not display quality material, but is stored in bags and boxes in the museum archive."

Evershed and his colleagues also plan to use the technique to study mummies. "A lot of Egyptian mummies were exported out of Egypt by the Victorians, and they often applied modern treatments to preserve them," Evershed says. The researchers hope to distinguish between a modern treatment and the original embalming agent.

The method could eventually be used for a variety of other analyses. "Potentially, you could date any other material that has preserved organic compounds," like pitches from wood products or collagen from bones, according to Evershed. "You could even isolate individual amino acids by this preparative GC approach, but no one’s tried that. That’s the next step."

Allison Byrum | EurekAlert!
Further information:
http://www.acs.org/

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>