Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Social insects point to non-genetic origins of societies

29.09.2003


Social structures form through group dynamics, not trait selection



From her work studying social insects, Arizona State University biologist Jennifer Fewell believes that these remarkable animals suggest a an alternate cause behind the development of complex societies. In a viewpoint essay in the September 26 issue of the journal Science, Fewell argues that complex social structures like those seen in social insect communities can arise initially from the nature of group interactions -- the inherent dynamics of networks.

The ability of certain animals to form complex social systems -- particularly humans and social insects like bees, ants and termites -- is considered by many biologists to be one of the pinnacles of biological adaptation and complexity. Social organization allows organisms to share labor, to specialize in tasks and to coordinate efforts. Through organization, social animals accomplish remarkable things - they build colonies supporting millions of individuals, maintain multi-layered social systems, manage complex farming and food production systems, and build elaborate designs and constructions, from giant self-cooling termite towers to skyscrapers.


The development of social systems is often assumed to be driven by species modifications arrived at through natural selection. Social characteristics such as caste systems and complex behaviors have been thought to be traits programmed by genes, created through evolutionary processes. Though insect social systems are in many ways as complex as human societies, Fewell contends that the relative simplicity of the insects themselves argues against the systems being created solely by the evolutionary development of biocomplexity in the individual organisms.

"We look at human groups and we think we have these elaborate systems of interaction because we are elaborate beings, but when you look at an ant, you know that it is not an elaborate being," she said. ", When you see how elaborate their societies are, you realize that there is another answer to the question of how these arise. And if there’s another answer for them, there might be another answer for us too."

Network dynamics, Fewell argues, can create organized social structures when relatively simple connections between various individuals in a group create patterns of behavior of increasing complexity, much the same way as relatively simple mathematical rules can create mathematical patterns of great intricacy.

"How do termites know how to build this huge chimney that allows a colony to thermoregulate?" Fewell asked. "The answer is that they don’t - it’s an emergent property of simple interactions - one termite puts a piece of dirt there and the other termite comes along and smells that a termite put her piece of dirt there, so she does too, instead of somewhere else. At first it’s random and termites are putting their dirt in different places, but then one place becomes the dominant location and the structure goes from there."

In the same way, organized societies themselves can be created by patterns developed through simple interactions in a network of individuals.

"The patterns are things that we call emergent properties - colony-level behaviors or structures that can be explained by looking at interactions," Fewell said. "The one that I am most interested in is division of labor, in which different individuals perform different tasks and specialize on different activities.

"This happens, for example, when you put a group of students together. Give them an assignment and they start organizing -- somebody will start note-taking, and someone will structure the discussion, and someone will go up to the board, and someone will just sit there and let everyone else do the work. Similar division of labor happens in a social insect colony, though social insects are much simpler animals."

Though social networks are commonly thought of as evolutionary adaptations, Fewell turns this idea on its head by proposing that the network forms first, following the logic and pattern of group connections, then adaptation follows to strengthen the pattern. Social organization, seen in this light, is essentially an emergent property that comes from the network’s geometry - a natural pattern to which organisms adapt.

"Social insects are interesting because you can follow them ,individually mark them and see the patterns form," she said. "Humans are affected by the same kinds of emerging properties. If you look at global patterns of social organization, you can see networks shaping what is going on. You are --in part-- what your social environment makes you."

James Hathaway | EurekAlert!
Further information:
http://www.asu.edu/asunews/

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>