Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Social insects point to non-genetic origins of societies

29.09.2003


Social structures form through group dynamics, not trait selection



From her work studying social insects, Arizona State University biologist Jennifer Fewell believes that these remarkable animals suggest a an alternate cause behind the development of complex societies. In a viewpoint essay in the September 26 issue of the journal Science, Fewell argues that complex social structures like those seen in social insect communities can arise initially from the nature of group interactions -- the inherent dynamics of networks.

The ability of certain animals to form complex social systems -- particularly humans and social insects like bees, ants and termites -- is considered by many biologists to be one of the pinnacles of biological adaptation and complexity. Social organization allows organisms to share labor, to specialize in tasks and to coordinate efforts. Through organization, social animals accomplish remarkable things - they build colonies supporting millions of individuals, maintain multi-layered social systems, manage complex farming and food production systems, and build elaborate designs and constructions, from giant self-cooling termite towers to skyscrapers.


The development of social systems is often assumed to be driven by species modifications arrived at through natural selection. Social characteristics such as caste systems and complex behaviors have been thought to be traits programmed by genes, created through evolutionary processes. Though insect social systems are in many ways as complex as human societies, Fewell contends that the relative simplicity of the insects themselves argues against the systems being created solely by the evolutionary development of biocomplexity in the individual organisms.

"We look at human groups and we think we have these elaborate systems of interaction because we are elaborate beings, but when you look at an ant, you know that it is not an elaborate being," she said. ", When you see how elaborate their societies are, you realize that there is another answer to the question of how these arise. And if there’s another answer for them, there might be another answer for us too."

Network dynamics, Fewell argues, can create organized social structures when relatively simple connections between various individuals in a group create patterns of behavior of increasing complexity, much the same way as relatively simple mathematical rules can create mathematical patterns of great intricacy.

"How do termites know how to build this huge chimney that allows a colony to thermoregulate?" Fewell asked. "The answer is that they don’t - it’s an emergent property of simple interactions - one termite puts a piece of dirt there and the other termite comes along and smells that a termite put her piece of dirt there, so she does too, instead of somewhere else. At first it’s random and termites are putting their dirt in different places, but then one place becomes the dominant location and the structure goes from there."

In the same way, organized societies themselves can be created by patterns developed through simple interactions in a network of individuals.

"The patterns are things that we call emergent properties - colony-level behaviors or structures that can be explained by looking at interactions," Fewell said. "The one that I am most interested in is division of labor, in which different individuals perform different tasks and specialize on different activities.

"This happens, for example, when you put a group of students together. Give them an assignment and they start organizing -- somebody will start note-taking, and someone will structure the discussion, and someone will go up to the board, and someone will just sit there and let everyone else do the work. Similar division of labor happens in a social insect colony, though social insects are much simpler animals."

Though social networks are commonly thought of as evolutionary adaptations, Fewell turns this idea on its head by proposing that the network forms first, following the logic and pattern of group connections, then adaptation follows to strengthen the pattern. Social organization, seen in this light, is essentially an emergent property that comes from the network’s geometry - a natural pattern to which organisms adapt.

"Social insects are interesting because you can follow them ,individually mark them and see the patterns form," she said. "Humans are affected by the same kinds of emerging properties. If you look at global patterns of social organization, you can see networks shaping what is going on. You are --in part-- what your social environment makes you."

James Hathaway | EurekAlert!
Further information:
http://www.asu.edu/asunews/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>