Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Social insects point to non-genetic origins of societies


Social structures form through group dynamics, not trait selection

From her work studying social insects, Arizona State University biologist Jennifer Fewell believes that these remarkable animals suggest a an alternate cause behind the development of complex societies. In a viewpoint essay in the September 26 issue of the journal Science, Fewell argues that complex social structures like those seen in social insect communities can arise initially from the nature of group interactions -- the inherent dynamics of networks.

The ability of certain animals to form complex social systems -- particularly humans and social insects like bees, ants and termites -- is considered by many biologists to be one of the pinnacles of biological adaptation and complexity. Social organization allows organisms to share labor, to specialize in tasks and to coordinate efforts. Through organization, social animals accomplish remarkable things - they build colonies supporting millions of individuals, maintain multi-layered social systems, manage complex farming and food production systems, and build elaborate designs and constructions, from giant self-cooling termite towers to skyscrapers.

The development of social systems is often assumed to be driven by species modifications arrived at through natural selection. Social characteristics such as caste systems and complex behaviors have been thought to be traits programmed by genes, created through evolutionary processes. Though insect social systems are in many ways as complex as human societies, Fewell contends that the relative simplicity of the insects themselves argues against the systems being created solely by the evolutionary development of biocomplexity in the individual organisms.

"We look at human groups and we think we have these elaborate systems of interaction because we are elaborate beings, but when you look at an ant, you know that it is not an elaborate being," she said. ", When you see how elaborate their societies are, you realize that there is another answer to the question of how these arise. And if there’s another answer for them, there might be another answer for us too."

Network dynamics, Fewell argues, can create organized social structures when relatively simple connections between various individuals in a group create patterns of behavior of increasing complexity, much the same way as relatively simple mathematical rules can create mathematical patterns of great intricacy.

"How do termites know how to build this huge chimney that allows a colony to thermoregulate?" Fewell asked. "The answer is that they don’t - it’s an emergent property of simple interactions - one termite puts a piece of dirt there and the other termite comes along and smells that a termite put her piece of dirt there, so she does too, instead of somewhere else. At first it’s random and termites are putting their dirt in different places, but then one place becomes the dominant location and the structure goes from there."

In the same way, organized societies themselves can be created by patterns developed through simple interactions in a network of individuals.

"The patterns are things that we call emergent properties - colony-level behaviors or structures that can be explained by looking at interactions," Fewell said. "The one that I am most interested in is division of labor, in which different individuals perform different tasks and specialize on different activities.

"This happens, for example, when you put a group of students together. Give them an assignment and they start organizing -- somebody will start note-taking, and someone will structure the discussion, and someone will go up to the board, and someone will just sit there and let everyone else do the work. Similar division of labor happens in a social insect colony, though social insects are much simpler animals."

Though social networks are commonly thought of as evolutionary adaptations, Fewell turns this idea on its head by proposing that the network forms first, following the logic and pattern of group connections, then adaptation follows to strengthen the pattern. Social organization, seen in this light, is essentially an emergent property that comes from the network’s geometry - a natural pattern to which organisms adapt.

"Social insects are interesting because you can follow them ,individually mark them and see the patterns form," she said. "Humans are affected by the same kinds of emerging properties. If you look at global patterns of social organization, you can see networks shaping what is going on. You are --in part-- what your social environment makes you."

James Hathaway | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>