Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Social insects point to non-genetic origins of societies

29.09.2003


Social structures form through group dynamics, not trait selection



From her work studying social insects, Arizona State University biologist Jennifer Fewell believes that these remarkable animals suggest a an alternate cause behind the development of complex societies. In a viewpoint essay in the September 26 issue of the journal Science, Fewell argues that complex social structures like those seen in social insect communities can arise initially from the nature of group interactions -- the inherent dynamics of networks.

The ability of certain animals to form complex social systems -- particularly humans and social insects like bees, ants and termites -- is considered by many biologists to be one of the pinnacles of biological adaptation and complexity. Social organization allows organisms to share labor, to specialize in tasks and to coordinate efforts. Through organization, social animals accomplish remarkable things - they build colonies supporting millions of individuals, maintain multi-layered social systems, manage complex farming and food production systems, and build elaborate designs and constructions, from giant self-cooling termite towers to skyscrapers.


The development of social systems is often assumed to be driven by species modifications arrived at through natural selection. Social characteristics such as caste systems and complex behaviors have been thought to be traits programmed by genes, created through evolutionary processes. Though insect social systems are in many ways as complex as human societies, Fewell contends that the relative simplicity of the insects themselves argues against the systems being created solely by the evolutionary development of biocomplexity in the individual organisms.

"We look at human groups and we think we have these elaborate systems of interaction because we are elaborate beings, but when you look at an ant, you know that it is not an elaborate being," she said. ", When you see how elaborate their societies are, you realize that there is another answer to the question of how these arise. And if there’s another answer for them, there might be another answer for us too."

Network dynamics, Fewell argues, can create organized social structures when relatively simple connections between various individuals in a group create patterns of behavior of increasing complexity, much the same way as relatively simple mathematical rules can create mathematical patterns of great intricacy.

"How do termites know how to build this huge chimney that allows a colony to thermoregulate?" Fewell asked. "The answer is that they don’t - it’s an emergent property of simple interactions - one termite puts a piece of dirt there and the other termite comes along and smells that a termite put her piece of dirt there, so she does too, instead of somewhere else. At first it’s random and termites are putting their dirt in different places, but then one place becomes the dominant location and the structure goes from there."

In the same way, organized societies themselves can be created by patterns developed through simple interactions in a network of individuals.

"The patterns are things that we call emergent properties - colony-level behaviors or structures that can be explained by looking at interactions," Fewell said. "The one that I am most interested in is division of labor, in which different individuals perform different tasks and specialize on different activities.

"This happens, for example, when you put a group of students together. Give them an assignment and they start organizing -- somebody will start note-taking, and someone will structure the discussion, and someone will go up to the board, and someone will just sit there and let everyone else do the work. Similar division of labor happens in a social insect colony, though social insects are much simpler animals."

Though social networks are commonly thought of as evolutionary adaptations, Fewell turns this idea on its head by proposing that the network forms first, following the logic and pattern of group connections, then adaptation follows to strengthen the pattern. Social organization, seen in this light, is essentially an emergent property that comes from the network’s geometry - a natural pattern to which organisms adapt.

"Social insects are interesting because you can follow them ,individually mark them and see the patterns form," she said. "Humans are affected by the same kinds of emerging properties. If you look at global patterns of social organization, you can see networks shaping what is going on. You are --in part-- what your social environment makes you."

James Hathaway | EurekAlert!
Further information:
http://www.asu.edu/asunews/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>