Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salk news: A new view on brain function

26.09.2003


Salk researcher provides new view on how the brain functions



Scientists are developing a new paradigm for how the brain functions. They propose that the brain is not a huge fixed network, as had been previously thought, but a dynamic, changing network that adapts continuously to meet the demands of communication and computational needs.

In the Sept. 26 issue of Science, Salk Institute professor Terrence Sejnowski and University of Cambridge professor Simon Laughlin argue that the human brain has evolved to operate as an enormously efficient "hybrid device," capable of making far more sophisticated computations than the most powerful computers, and the long-distance communication systems in brains have been optimized by evolution for energy efficiency.


"In the past, we were only able to look at brain function by looking at single neurons or local networks of neurons. We were only able to see the trees, so to speak," said Sejnowski. "With breakthroughs in recording techniques including brain imaging, which gives us a global picture of brain activity, and advances in computational neurobiology, we can now take a more global perspective. We’re looking at the entire forest, and we’re asking the question: How has the forest evolved?"

As the brain has evolved over millions of years, according to Sejnowski, it has become amazingly efficient and powerful. He says that nature has "optimized the structure and function of cortical networks with design principles similar to those used in electronic networks." To illustrate the brain’s tremendous capacity, Sejnowski and Laughlin state that the potential bandwidth of all of the neurons in the human cortex is "comparable to the total world backbone capacity of the Internet in 2002."

But they point out that simply comparing the brain to the digital computers of today does not adequately describe the way it functions and makes computations. The brain, according to Sejnowski, has more of the hallmarks of an "energy efficient hybrid device."

"These hybrids offer the ability of analog devices to perform arithmetic functions such as division directly and economically, combined with the ability of digital devices to resist noise," he writes in Science.

"This is an important era in our understanding of the brain," according to Sejnowski. "We are moving toward uncovering some of the fundamental principles related to how neurons in the brain communicate. There is a tremendous amount of information distributed throughout the far-flung regions of the brain. Where does it come from? Where does it go? And how does the brain deal with all of this information?

"These are questions we’ve not been able to address on a comprehensive basis until now. I believe that over the next decade, we will begin to develop some answers."


The Salk Institute for Biological Studies, located in La Jolla, Calif., is an independent, nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health and conditions, and the training of future generations of researchers. The institute was founded in 1960 by Jonas Salk, M.D., with a gift of land from the City of San Diego and the financial support of the March of Dimes Birth Defects Foundation.

Robert Bradford | EurekAlert!
Further information:
http://www.salk.edu/

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>