Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salk news: A new view on brain function

26.09.2003


Salk researcher provides new view on how the brain functions



Scientists are developing a new paradigm for how the brain functions. They propose that the brain is not a huge fixed network, as had been previously thought, but a dynamic, changing network that adapts continuously to meet the demands of communication and computational needs.

In the Sept. 26 issue of Science, Salk Institute professor Terrence Sejnowski and University of Cambridge professor Simon Laughlin argue that the human brain has evolved to operate as an enormously efficient "hybrid device," capable of making far more sophisticated computations than the most powerful computers, and the long-distance communication systems in brains have been optimized by evolution for energy efficiency.


"In the past, we were only able to look at brain function by looking at single neurons or local networks of neurons. We were only able to see the trees, so to speak," said Sejnowski. "With breakthroughs in recording techniques including brain imaging, which gives us a global picture of brain activity, and advances in computational neurobiology, we can now take a more global perspective. We’re looking at the entire forest, and we’re asking the question: How has the forest evolved?"

As the brain has evolved over millions of years, according to Sejnowski, it has become amazingly efficient and powerful. He says that nature has "optimized the structure and function of cortical networks with design principles similar to those used in electronic networks." To illustrate the brain’s tremendous capacity, Sejnowski and Laughlin state that the potential bandwidth of all of the neurons in the human cortex is "comparable to the total world backbone capacity of the Internet in 2002."

But they point out that simply comparing the brain to the digital computers of today does not adequately describe the way it functions and makes computations. The brain, according to Sejnowski, has more of the hallmarks of an "energy efficient hybrid device."

"These hybrids offer the ability of analog devices to perform arithmetic functions such as division directly and economically, combined with the ability of digital devices to resist noise," he writes in Science.

"This is an important era in our understanding of the brain," according to Sejnowski. "We are moving toward uncovering some of the fundamental principles related to how neurons in the brain communicate. There is a tremendous amount of information distributed throughout the far-flung regions of the brain. Where does it come from? Where does it go? And how does the brain deal with all of this information?

"These are questions we’ve not been able to address on a comprehensive basis until now. I believe that over the next decade, we will begin to develop some answers."


The Salk Institute for Biological Studies, located in La Jolla, Calif., is an independent, nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health and conditions, and the training of future generations of researchers. The institute was founded in 1960 by Jonas Salk, M.D., with a gift of land from the City of San Diego and the financial support of the March of Dimes Birth Defects Foundation.

Robert Bradford | EurekAlert!
Further information:
http://www.salk.edu/

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

Guardians of the Gate

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>