Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke scientists ’program’ DNA molecules to self assemble into patterned nanostructures

26.09.2003


Duke University researchers have used self-assembling DNA molecules as molecular building blocks called "tiles" to construct protein-bearing scaffolds and metal wires at the billionths of a meter, or "nanoscale."



The achievements in nanoscale synthesis, which the five authors said could lead to programmable molecular scale sensors or electronic circuitry, were described in a paper in the Sept. 26, 2003, issue of the journal Science written by HaoYan, Thom LaBean, Gleb Finkelstein, Sung Ha Park and John Reif.

The Duke group’s research was funded by the National Science Foundation, the Defense Advanced Research Project Agency, and an industrial partners arrangement with Taiko Denki Co., Ltd. Fashioning protein nanoscaffolds and silver nanowires may be only the beginning, because tiles of this form "can be easily programmed by varying the sticky ends to form more sophisticated arrays," the authors wrote.


"Our goal is to use DNA self-assembly to precisely control the location of other molecules," said Yan, a molecular chemist working as an assistant research professor in Duke’s computer science department.

"The big promise is that if we can increase the size of our lattices we can template nanoelectronics onto them and make useful devices and circuits at a smaller scale than has ever been done before," added LaBean, a molecular biologist who is also an assistant research professor of computer science.

Yan and LaBean are the tiles’ principal designers. Their work in DNA computation shows that the tiles’ self assembly into structures can be programmed, according to the researchers. "The tile itself is easy to modify by changing strands, so we can program the tile again and again for other purposes," Yan said.

Because DNA strands naturally, but selectively, stick together, the Duke team reported in the Science paper that they could make the DNA strands arrange themselves into cross shaped "tiles" capable of forming molecular bonds on all four ends of the cross arms. As a result, large numbers of the crosses could naturally stick together to form semi-rigid waffle-patterned arrays that the authors called "stable and well behaved."

Since two types of DNA component units called bases selectively pair up with the two others to form DNA strands -- that is, adenine with thymine and guanine with cytosine -- the scientists could exploit those biochemical properties to program different ways for their tiles to link together.

When the tiles were programmed to link with their faces all oriented in the same up or down direction, they self-assembled into narrow and long waffled "nanoribbons." But when each tile’s face was programmed to point in the opposite direction from its neighbor, wider and broader waffled "nanogrids" were formed, the authors wrote.

In the case of the nanogrids, the authors found they could affix protein molecules to the cavities that the DNA tiles naturally formed at the center of each cross.

To affix the proteins, they first attached the chemical biotin to parts of the DNA strands they knew would self-assemble in the cavities. Then they added the protein streptavidin to the solution containing self assembled nanogrids. As a result, the biotin and streptavidin bound, in a reaction familiar to protein chemists. So complexes of protein molecules assembled atop those cavities.

"To use DNA self-assembly to template protein molecules or other molecules has been sought for years, and this is the first time it has been demonstrated so clearly," said Yan. LaBean added that biomedical researchers could use such molecule-bearing nanogrids to detect other molecules. "Single molecule detection is one of the holy grails for sensors and diagnostics," he said.

The researchers also used a two-step chemical procedure to coat silver onto the DNA nanoribbons to produce electrically-conducting nanowires. Assistant physics professor and nanoscientist Finkelstein, with graduate student Park, then deposited nanoscale metal connecting leads using a technique called electron beam lithography.

Building tiles of DNA arranged in angular shapes was pioneered in the laboratory of biochemist Nadrian "Ned" Seeman of New York University, where Yan earned his Ph.D. LaBean has collaborated for several years with Duke computer science professor Reif on designing DNA tiles for use as elements in biomolecular computation.

The idea of using the tiles as the equivalents of computing bits draws on the fact that DNA molecules stick together in predictable ways and can also, because of their nanoscale sizes, interact in extremely large numbers within small containers of solution.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu/

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>