Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke scientists ’program’ DNA molecules to self assemble into patterned nanostructures

26.09.2003


Duke University researchers have used self-assembling DNA molecules as molecular building blocks called "tiles" to construct protein-bearing scaffolds and metal wires at the billionths of a meter, or "nanoscale."



The achievements in nanoscale synthesis, which the five authors said could lead to programmable molecular scale sensors or electronic circuitry, were described in a paper in the Sept. 26, 2003, issue of the journal Science written by HaoYan, Thom LaBean, Gleb Finkelstein, Sung Ha Park and John Reif.

The Duke group’s research was funded by the National Science Foundation, the Defense Advanced Research Project Agency, and an industrial partners arrangement with Taiko Denki Co., Ltd. Fashioning protein nanoscaffolds and silver nanowires may be only the beginning, because tiles of this form "can be easily programmed by varying the sticky ends to form more sophisticated arrays," the authors wrote.


"Our goal is to use DNA self-assembly to precisely control the location of other molecules," said Yan, a molecular chemist working as an assistant research professor in Duke’s computer science department.

"The big promise is that if we can increase the size of our lattices we can template nanoelectronics onto them and make useful devices and circuits at a smaller scale than has ever been done before," added LaBean, a molecular biologist who is also an assistant research professor of computer science.

Yan and LaBean are the tiles’ principal designers. Their work in DNA computation shows that the tiles’ self assembly into structures can be programmed, according to the researchers. "The tile itself is easy to modify by changing strands, so we can program the tile again and again for other purposes," Yan said.

Because DNA strands naturally, but selectively, stick together, the Duke team reported in the Science paper that they could make the DNA strands arrange themselves into cross shaped "tiles" capable of forming molecular bonds on all four ends of the cross arms. As a result, large numbers of the crosses could naturally stick together to form semi-rigid waffle-patterned arrays that the authors called "stable and well behaved."

Since two types of DNA component units called bases selectively pair up with the two others to form DNA strands -- that is, adenine with thymine and guanine with cytosine -- the scientists could exploit those biochemical properties to program different ways for their tiles to link together.

When the tiles were programmed to link with their faces all oriented in the same up or down direction, they self-assembled into narrow and long waffled "nanoribbons." But when each tile’s face was programmed to point in the opposite direction from its neighbor, wider and broader waffled "nanogrids" were formed, the authors wrote.

In the case of the nanogrids, the authors found they could affix protein molecules to the cavities that the DNA tiles naturally formed at the center of each cross.

To affix the proteins, they first attached the chemical biotin to parts of the DNA strands they knew would self-assemble in the cavities. Then they added the protein streptavidin to the solution containing self assembled nanogrids. As a result, the biotin and streptavidin bound, in a reaction familiar to protein chemists. So complexes of protein molecules assembled atop those cavities.

"To use DNA self-assembly to template protein molecules or other molecules has been sought for years, and this is the first time it has been demonstrated so clearly," said Yan. LaBean added that biomedical researchers could use such molecule-bearing nanogrids to detect other molecules. "Single molecule detection is one of the holy grails for sensors and diagnostics," he said.

The researchers also used a two-step chemical procedure to coat silver onto the DNA nanoribbons to produce electrically-conducting nanowires. Assistant physics professor and nanoscientist Finkelstein, with graduate student Park, then deposited nanoscale metal connecting leads using a technique called electron beam lithography.

Building tiles of DNA arranged in angular shapes was pioneered in the laboratory of biochemist Nadrian "Ned" Seeman of New York University, where Yan earned his Ph.D. LaBean has collaborated for several years with Duke computer science professor Reif on designing DNA tiles for use as elements in biomolecular computation.

The idea of using the tiles as the equivalents of computing bits draws on the fact that DNA molecules stick together in predictable ways and can also, because of their nanoscale sizes, interact in extremely large numbers within small containers of solution.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu/

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

 
Latest News

Cognitive Power Electronics 4.0 is gaining momentum

28.05.2018 | Trade Fair News

Organic light-emitting diodes become brighter and more durable

28.05.2018 | Physics and Astronomy

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>