Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune alarm system can both amplify and silence alerts, scientists find

26.09.2003


Chance encounter between two labs resurrects dying immune system theory



A lucky encounter between laboratories at Washington University School of Medicine in St. Louis and the University of California-Berkeley has resurrected a moribund theory about how the immune system mobilizes one of the body’s most important defensive systems: the immune system cells known as T lymphocytes.

The new findings, published online by the journal Science this week, are a key step toward understanding the intricate molecular processes that allow the body to recognize a cell infected by an invader and destroy it.


Ironically, the theory confirmed by the new results involves two cells bumping together -- the same thing that happened when Arup Chakraborty, Ph.D., professor of chemical engineering at Berkeley, called Andrey Shaw, M.D., professor of pathology and immunology at Washington University, and asked him to look over a new paper.

Chakraborty’s original paper, later merged with Shaw’s results to form the Science paper, featured a computational model of the immune synapse theory, a hypothesis formulated eight years earlier by Shaw and two coauthors in Washington University’s Department of Pathology and Immunology, Michael Dustin, Ph.D., and Paul Allen, Ph.D.

The three had speculated that when T cells bump against another type of immune system cell, the antigen-presenting cell, proteins on the surface of both cells reorganize and interact at the point of contact, potentially enhancing the transmission of a key message to the T cell: "Invaders are here, start the attack!" Because nerve cells also have specialized structures at areas known as synapses where they pass messages to each other, the authors referred to the contact between the immune cells as an immune synapse.

Shaw and colleagues had shown through years of research that specialized synapse structures formed when antigen-presenting cells and T cells bumped into each other, and that those structures were stable for an unusually long period of time. But when contacted by Chakraborty, Shaw had been in the process of writing a paper acknowledging that the latest experimental results, like several other recent experiments, seemed to suggest that the immune synapse wasn’t behaving like they expected.

"The kind of nail in the coffin came when we tested cells that were deficient in CD2AP, one of the proteins that we work with that helps form the synapse," Shaw recalls. "When we looked at those cells’ ability to form synapses, we found that in fact the cells did not form what we would call any recognizable synapse."

Despite the lack of synapses, T cells came away from the collisions activated -- as though they’d received the "attack!" message. This led Shaw to speculate that the synapse might form to deactivate the T cell.

"That was kind of disappointing to us, because this idea that the synapse would be uniquely involved in whether a cell would be turned on was this beautiful idea that we really, really liked," Shaw says.

Chakraborty’s computational model revealed a new perspective on the complex mix of factors interacting in the two types of cells, rescuing the "beautiful idea" by suggesting that the immune synapse was linked both to turning T cells on and to shutting them down. According to Chakraborty’s results, the greater the synapse’s ability to amplify the "attack!" message upon initial contact, the harder the synapse could work to shut that same message down in later stages of contact.

In collaboration with Michael Dustin, Ph.D., now at New York University Medical School, Shaw’s group was quickly able to devise an experimental test that proved Chakraborty’s interpretation correct. CD2AP, the protein whose levels had been lowered in Shaw’s most recent experiments, turned out to be involved in the synapse’s ability to dampen signaling by pushing activated receptors on the surface of the T cells toward the lysosome, a kind of cellular garbage can.

"We used the term adaptive controller, an engineering term, to describe the synapse," Shaw explains. "It helps to amplify weak signals by concentrating ligands and receptors in the same area of the cells. But at the same time, it prevents strong signals from overpowering the cells -- which in most cases would lead to cell death -- by rapidly turning off the very strongest signals.

"We only realized this with the use of a computational analysis that allowed us to see how all these different variables were playing out," he says. "There’s a lot of talk that goes around about this need for a union between computational biology and what I would call wet biology, and I think it’s hard for most of us to imagine how that would work … But this was a case where I really thought it was beautiful, it worked together so perfectly."

Shaw notes that while the new results confirm several key concepts in the immune synapse theory, there are still some aspects that need to be directly tested, including the synapse’s ability to amplify a very weak "invaders are here" signal.



Lee K-H, Dinner AR, Tu C, Campi G, Subhadip R, Varma R, Sims TN, Burack WR, Wu H, Wang J, Kanagawa O, Markiewicz M, Allen P, Dustin ML, Chakraborty AK, Shaw AS. The Immunological Synapse Balances T Cell Receptor Signaling and Degradation. Science Express, September 25, 2003.

Funding from the National Institutes of Health, the Psoriasis Foundation, the Irene Diamond Foundation, the Burroughs-Wellcome Fund, and the National Science Foundation supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>