Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Software tackles protein pathways

26.09.2003


When biologists want to compare different sequences of DNA or protein, it’s as simple as plugging the information into a browser and pressing enter. Within 15 seconds, an online software tool contrasts one sequence of DNA with up to 18 million others catalogued in public databases. Now, a software tool developed by Whitehead Institute scientists promises to apply this same computational muscle to the far more intricate world of protein interaction networks, giving researchers a new view of the complexities of cellular life.



DNA sequencing technologies allow scientists to easily identify genes and their nucleotide building blocks -- linear strings of information represented by the letters A, C, T and G. The wide accessibility of these technologies has enabled both companies and academic labs to assemble huge libraries of genomic information. Computer engineers, in turn, have helped scientists navigate these oceans of data through tools such as BLAST, the primary software platform that scientists use to compare protein and DNA sequences. However, many researchers believe that the next phase of genomics research will be to map out interaction networks -- the cell’s internal wiring system through which genes and proteins communicate.

"The 80s and 90s were about sequences," says Trey Ideker, a former Whitehead Fellow who recently was named an assistant professor of bioengineering at University of California, San Diego. "Now we’re starting to see newer types of technologies -- like microarrays -- that allow us to look at how a cell, in its entirety, responds to drugs and other kinds of stimuli. These technologies will revolutionize biology." Already, researchers like Whitehead’s Rick Young are beginning to assemble libraries of cellular network pathway maps using microarrays.


"But there’s a problem that’s not yet addressed," says Whitehead Fellow Brent Stockwell. "What if I’ve identified a whole protein interaction network in one type of organism and I want to see if a similar network exists in other species?" Until recently, there was no way to do this. It’s a need that Stockwell and Ideker hope their new software tool, called PathBLAST, will meet.

At the core of PathBLAST is a program that can represent these interaction networks mathematically. The program is based on algorithms that scientists use to represent chemical structures. "An interaction network, in its form, is essentially like a chemical structure," says Stockwell, "and fortunately there are already a great set of tools for representing chemical structures." Developed by Brian Kelley, a software engineer in Stockwell’s lab, this algorithm translates all the information from an entire interaction network into a linear code. Using an interface developed by Whitehead’s Biocomputing group, PathBLAST can rapidly compare interaction networks from different organisms.

In research published this week in the online edition of the Proceedings of the National Academy of Sciences, Ideker and Stockwell took the entire genomes from the yeast S. cerevisiae and the bacterium H. pylori and compared the interaction networks in both organisms. The software crunched the numbers and displayed the results in seconds. The turnaround time was impressive considering the scope of the effort: the bacterium contained 1,465 interactions among 732 proteins: the yeast contained 14,489 interactions among 4,688 proteins.

The study revealed that one pathway critical in catalyzing DNA replication and another one instrumental in protein degradation were conserved in both organisms as a single network. "What was surprising was that there was one network, not two," Ideker says. "So now the question is, ’What’s the attraction between these two complexes?’"

At the moment, there’s no clear answer. But as labs continue to do these types of experiments, there eventually could be a huge payoff in comparing such things as viral networks to human networks, possibly allowing drug companies to develop products that target cellular pathways unique to viruses.

As for other applications, it’s still too early to tell, Ideker says. "It’s like asking in 1985, ’What’s the impact of gene sequencing going to be?’ We’re trying to get the basic mechanisms in place to eventually do these kinds of comparisons."

Kelli Whitlock | EurekAlert!
Further information:
http://www.pathblast.org.
http://www.wi.mit.edu/home.html

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>