Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anchovies In The Net: Concealed Identities Revealed

24.09.2003


For those who delight in eating Mediterranean anchovies, the taste of inshore varieties has long been preferred to that of the open-sea kind. An IRD researcher has shown that this organoleptic difference coincides with a real biological distinction. In the Mediterranean Sea there is not just one species of European anchovy but two, each occupying its own habitat.



Correspondence analysis was performed of all existing genetic data obtained between 1980 and 1996 concerning anchovies from the Mediterranean Basin and the eastern Atlantic, in order to establish the links between genetic variations and geographical distribution of different populations. There are two hypotheses that might explain the existence of two habitat-specific Mediterranean species, one coastal, the other pelagic.

The results highlight the value of using the tools of molecular biology to take a fresh look at anchovy classification, seeing that an ability to distinguish species can have a direct influence on the organization of fishing and trade in these fish, particularly in the Mediterranean.


The anchovy family embraces dozens of species, abundant in both tropical and temperate waters. The European anchovy, Engraulis encrasicolus, about 15 cm long, lives in schools in the waters of the eastern Atlantic and the Mediterranean in zones down to 150 m depth. Anchovy make up at least 15% of the 86 million tonnes of fish caught in the world each year (1). Economically important, they are also highly significant ecologically.
They constitute the staple diet of many predator species, such as tuna, some sharks, or certain birds. For these reasons, they have been the subject of several studies in molecular biology devoted to improving understanding of the genetic structure of stocks pursued for fishing.

An IRD researcher analysed all the results of work conducted in the eastern Atlantic and the Mediterranean Basin and succeeded in finding links between genetic variations and geographical distribution of different populations of European anchovy. He thus shed new light on their genetic composition, suggesting the existence of two species in the Mediterranean.

The division of fishing resources into stocks, useful for fisheries management, does not necessarily correspond to any true biological situation. Anchovy from the Adriatic Sea therefore, which until very recently were managed as a single stock, were newly recognized as originating from two distinct populations by their size and appearance. The ones which inhabit inshore reaches, estuaries or lagoons turn out to be paler and smaller than the oceanic (pelagic) ones. Nonetheless, these differences are not taken into account in the organization of the anchovy fishing and trade.

Morphological differences are accompanied by significant genetic differences, revealed by analysis of frequencies of genetic markers (2). In one and the same region, coastal anchovies are thus genetically different from the pelagic ones which live in the open sea. However, at the geographical scale of the whole Mediterranean Basin as a whole, inshore anchovy several thousands of kilometres apart prove to be genetically very close. This is the case for inshore anchovies inhabiting the northern reaches of the Adriatic, which are genetically indistinguishable from those in brackish estuary communities of the Golfe-de-Lion. This genetic proximity also concerns the pelagic varieties. Those inhabiting the Bay of Biscay show no significant genetic differences from those living in the western Mediterranean or the Ionian Sea.

These results indicate that genetic exchanges between the two anchovy varieties –coastal and pelagic- are restricted. The two forms therefore correspond to two distinct species, each tied to its habitat. Two hypotheses have been postulated to explain such speciation. Either there has been a divergence of the two forms following a geographical separation, an isolation by distance, then succeeded by an adaptation to different habitats, over a time-scale long enough for them no longer to be capable of interbreeding, once brought into secondary contact. Or, from generation to generation they adapted to their preferred habitat, while any hybrids between the two were eliminated by natural selection owing to lack of adaptation to either of these habitats. Only further more detailed investigations, calling on new genetic markers plus biological studies, on a large number of anchovy populations, could lead to any accurate identification of the evolutionary mechanisms brought into play in this speciation process.

Whatever the case may be, these analyses emphasize the contribution molecular biology is making to anchovy species identification. An ability to distinguish the anchovy species moreover has economic significance. In the Mediterranean, the inshore anchovies are sought by connoisseurs because of their gastronomic value, superior to that of the oceanic variety. The small inshore anchovy – no more than 12 cm long- are consequently sold at a much higher price to French, Spanish or Italian fish merchants. However, their export is still forbidden, as current European legislation does not allow the export of anchovy of less than 12 cm length. This clause, adopted in line with a concern for preserving the juveniles and guaranteeing stock durability, refers only to the mature, adult size of pelagic anchovies, which are larger. An ability to distinguish between the two anchovy species in the fisheries statistics and a review of the legislation should lead to improved management of these resources.

Marie Guillaume | alfa
Further information:
http://www.ird.fr/us/actualites/fiches/

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>