Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells isolated from monkey eggs continue producing variety of other cells

23.09.2003


Wake Forest University Baptist Medical Center investigators report



A line of monkey stem cells, produced without the use of an embryo, has reproduced for more than two years and still retains the capability of differentiating into a variety of tissue types, a research team reports in the current on-line edition of the Proceedings of the National Academy of Sciences.

Kent Vrana, Ph.D., professor of physiology and pharmacology at Wake Forest University Baptist Medical Center and the first author on the report, said the stem cells have produced two types of neurons, and many other tissues such as heart, smooth muscle and beating cilia, the tiny hairlike extensions that line the airways.


The research team, from four universities and two private companies, first reported the stem cell line in January 2002 in the journal Science. At that time, some other scientists thought that the stem cell line might stop after several generations.

Vrana reports in the current paper that the stem cells possess the biological properties of indefinite replication found in cancer cells and embryonic stem cells.

These stem cells were developed by a process called parthenogenesis -- using only an egg from a female monkey and no sperm. The resulting multiplying group of cells, called a parthenote, cannot successfully implant into the mother’s womb and hence cannot develop any further than what is called the blastocyst stage, essentially a ball of cells.

But the team was able to take cells from that blastocyst and begin the stem cell line, called Cyno-1. Jason Hipp, a Wake Forest graduate student and second author on the paper, said this approach could "bypass the need for creating a competent embryo for the creation of stem cells."

Of great interest is the potential for developing an unlimited number of one type of neuron. These neurons could eventually pave the way for the treatment of Parkinson’s disease.

The neurons synthesize a neurotransmitter called dopamine, and are impaired in people with Parkinson’s disease.

"Clinical transplantation of specific fetal neurons has shown promise in the treatment of Parkinson’s and Huntington’s disease," said Vrana, "but obtaining such cells from animals or human fetal brain remains problematic." Obtaining cells produced in the laboratory from stem cells that come from parthenotes "could alleviate some of the ethical and technical concerns of human cell therapy."

Vrana said the striking ability of these stem cells derived from parthenotes to differentiate suggest a valid alternative to stem cells derived from normal fertilization.

To test whether the stem cells were "pluripotent" -- able to produce any cells -- the stem cells were injected into a mouse without a functioning immune system. The cells produced all three of the body’s cell layers: ectoderm (neuron, skin and hair follicles), mesoderm (cartilage, muscle and bone) and endoderm (intestinal epithelia), according to Jose Cibelli, professor of animal science at Michigan State University and co-author.

Moreover, the monkey stem cells have a normal number of chromosomes, Vrana said.

Parthenogenesis is not new biologically, but it is unknown in mammals. "Flies, ants, lizards, snakes, birds, reptiles, amphibians, honeybees and crayfish routinely reproduce in this manner. Placental mammals are not capable of this form of reproduction," said Vrana.



Among other members of the team were Ashley Goss, undergraduate student, Kathleen A. Grant, Ph.D., professor, Brian A. McCool, Ph.D., and Stephen J. Walker, Ph.D., assistant professors of physiology and pharmacology, and David Riddle, Ph.D., assistant professor of neurobiology and anatomy, all from Wake Forest; Peter Wettstein from the Department of Microbiology and Immunology at the Mayo Clinic; Lorenz Studer and Viviane Tabor from the Sloan Kettering Cancer Center in New York; Kerrianne Cunniff from Millennium Pharmaceuticals in Cambridge, Mass.; and Michael D. West and other researchers from Advanced Cell Technology in Worcester, Mass.

Additional Contact: Karen Richardson (rchrdsn@wfubmc.edu) at (336) 716-4587

Robert Conn | EurekAlert!
Further information:
http://www.wfubmc.edu/

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>