Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells isolated from monkey eggs continue producing variety of other cells

23.09.2003


Wake Forest University Baptist Medical Center investigators report



A line of monkey stem cells, produced without the use of an embryo, has reproduced for more than two years and still retains the capability of differentiating into a variety of tissue types, a research team reports in the current on-line edition of the Proceedings of the National Academy of Sciences.

Kent Vrana, Ph.D., professor of physiology and pharmacology at Wake Forest University Baptist Medical Center and the first author on the report, said the stem cells have produced two types of neurons, and many other tissues such as heart, smooth muscle and beating cilia, the tiny hairlike extensions that line the airways.


The research team, from four universities and two private companies, first reported the stem cell line in January 2002 in the journal Science. At that time, some other scientists thought that the stem cell line might stop after several generations.

Vrana reports in the current paper that the stem cells possess the biological properties of indefinite replication found in cancer cells and embryonic stem cells.

These stem cells were developed by a process called parthenogenesis -- using only an egg from a female monkey and no sperm. The resulting multiplying group of cells, called a parthenote, cannot successfully implant into the mother’s womb and hence cannot develop any further than what is called the blastocyst stage, essentially a ball of cells.

But the team was able to take cells from that blastocyst and begin the stem cell line, called Cyno-1. Jason Hipp, a Wake Forest graduate student and second author on the paper, said this approach could "bypass the need for creating a competent embryo for the creation of stem cells."

Of great interest is the potential for developing an unlimited number of one type of neuron. These neurons could eventually pave the way for the treatment of Parkinson’s disease.

The neurons synthesize a neurotransmitter called dopamine, and are impaired in people with Parkinson’s disease.

"Clinical transplantation of specific fetal neurons has shown promise in the treatment of Parkinson’s and Huntington’s disease," said Vrana, "but obtaining such cells from animals or human fetal brain remains problematic." Obtaining cells produced in the laboratory from stem cells that come from parthenotes "could alleviate some of the ethical and technical concerns of human cell therapy."

Vrana said the striking ability of these stem cells derived from parthenotes to differentiate suggest a valid alternative to stem cells derived from normal fertilization.

To test whether the stem cells were "pluripotent" -- able to produce any cells -- the stem cells were injected into a mouse without a functioning immune system. The cells produced all three of the body’s cell layers: ectoderm (neuron, skin and hair follicles), mesoderm (cartilage, muscle and bone) and endoderm (intestinal epithelia), according to Jose Cibelli, professor of animal science at Michigan State University and co-author.

Moreover, the monkey stem cells have a normal number of chromosomes, Vrana said.

Parthenogenesis is not new biologically, but it is unknown in mammals. "Flies, ants, lizards, snakes, birds, reptiles, amphibians, honeybees and crayfish routinely reproduce in this manner. Placental mammals are not capable of this form of reproduction," said Vrana.



Among other members of the team were Ashley Goss, undergraduate student, Kathleen A. Grant, Ph.D., professor, Brian A. McCool, Ph.D., and Stephen J. Walker, Ph.D., assistant professors of physiology and pharmacology, and David Riddle, Ph.D., assistant professor of neurobiology and anatomy, all from Wake Forest; Peter Wettstein from the Department of Microbiology and Immunology at the Mayo Clinic; Lorenz Studer and Viviane Tabor from the Sloan Kettering Cancer Center in New York; Kerrianne Cunniff from Millennium Pharmaceuticals in Cambridge, Mass.; and Michael D. West and other researchers from Advanced Cell Technology in Worcester, Mass.

Additional Contact: Karen Richardson (rchrdsn@wfubmc.edu) at (336) 716-4587

Robert Conn | EurekAlert!
Further information:
http://www.wfubmc.edu/

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>