Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells isolated from monkey eggs continue producing variety of other cells

23.09.2003


Wake Forest University Baptist Medical Center investigators report



A line of monkey stem cells, produced without the use of an embryo, has reproduced for more than two years and still retains the capability of differentiating into a variety of tissue types, a research team reports in the current on-line edition of the Proceedings of the National Academy of Sciences.

Kent Vrana, Ph.D., professor of physiology and pharmacology at Wake Forest University Baptist Medical Center and the first author on the report, said the stem cells have produced two types of neurons, and many other tissues such as heart, smooth muscle and beating cilia, the tiny hairlike extensions that line the airways.


The research team, from four universities and two private companies, first reported the stem cell line in January 2002 in the journal Science. At that time, some other scientists thought that the stem cell line might stop after several generations.

Vrana reports in the current paper that the stem cells possess the biological properties of indefinite replication found in cancer cells and embryonic stem cells.

These stem cells were developed by a process called parthenogenesis -- using only an egg from a female monkey and no sperm. The resulting multiplying group of cells, called a parthenote, cannot successfully implant into the mother’s womb and hence cannot develop any further than what is called the blastocyst stage, essentially a ball of cells.

But the team was able to take cells from that blastocyst and begin the stem cell line, called Cyno-1. Jason Hipp, a Wake Forest graduate student and second author on the paper, said this approach could "bypass the need for creating a competent embryo for the creation of stem cells."

Of great interest is the potential for developing an unlimited number of one type of neuron. These neurons could eventually pave the way for the treatment of Parkinson’s disease.

The neurons synthesize a neurotransmitter called dopamine, and are impaired in people with Parkinson’s disease.

"Clinical transplantation of specific fetal neurons has shown promise in the treatment of Parkinson’s and Huntington’s disease," said Vrana, "but obtaining such cells from animals or human fetal brain remains problematic." Obtaining cells produced in the laboratory from stem cells that come from parthenotes "could alleviate some of the ethical and technical concerns of human cell therapy."

Vrana said the striking ability of these stem cells derived from parthenotes to differentiate suggest a valid alternative to stem cells derived from normal fertilization.

To test whether the stem cells were "pluripotent" -- able to produce any cells -- the stem cells were injected into a mouse without a functioning immune system. The cells produced all three of the body’s cell layers: ectoderm (neuron, skin and hair follicles), mesoderm (cartilage, muscle and bone) and endoderm (intestinal epithelia), according to Jose Cibelli, professor of animal science at Michigan State University and co-author.

Moreover, the monkey stem cells have a normal number of chromosomes, Vrana said.

Parthenogenesis is not new biologically, but it is unknown in mammals. "Flies, ants, lizards, snakes, birds, reptiles, amphibians, honeybees and crayfish routinely reproduce in this manner. Placental mammals are not capable of this form of reproduction," said Vrana.



Among other members of the team were Ashley Goss, undergraduate student, Kathleen A. Grant, Ph.D., professor, Brian A. McCool, Ph.D., and Stephen J. Walker, Ph.D., assistant professors of physiology and pharmacology, and David Riddle, Ph.D., assistant professor of neurobiology and anatomy, all from Wake Forest; Peter Wettstein from the Department of Microbiology and Immunology at the Mayo Clinic; Lorenz Studer and Viviane Tabor from the Sloan Kettering Cancer Center in New York; Kerrianne Cunniff from Millennium Pharmaceuticals in Cambridge, Mass.; and Michael D. West and other researchers from Advanced Cell Technology in Worcester, Mass.

Additional Contact: Karen Richardson (rchrdsn@wfubmc.edu) at (336) 716-4587

Robert Conn | EurekAlert!
Further information:
http://www.wfubmc.edu/

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>