Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells isolated from monkey eggs continue producing variety of other cells

23.09.2003


Wake Forest University Baptist Medical Center investigators report



A line of monkey stem cells, produced without the use of an embryo, has reproduced for more than two years and still retains the capability of differentiating into a variety of tissue types, a research team reports in the current on-line edition of the Proceedings of the National Academy of Sciences.

Kent Vrana, Ph.D., professor of physiology and pharmacology at Wake Forest University Baptist Medical Center and the first author on the report, said the stem cells have produced two types of neurons, and many other tissues such as heart, smooth muscle and beating cilia, the tiny hairlike extensions that line the airways.


The research team, from four universities and two private companies, first reported the stem cell line in January 2002 in the journal Science. At that time, some other scientists thought that the stem cell line might stop after several generations.

Vrana reports in the current paper that the stem cells possess the biological properties of indefinite replication found in cancer cells and embryonic stem cells.

These stem cells were developed by a process called parthenogenesis -- using only an egg from a female monkey and no sperm. The resulting multiplying group of cells, called a parthenote, cannot successfully implant into the mother’s womb and hence cannot develop any further than what is called the blastocyst stage, essentially a ball of cells.

But the team was able to take cells from that blastocyst and begin the stem cell line, called Cyno-1. Jason Hipp, a Wake Forest graduate student and second author on the paper, said this approach could "bypass the need for creating a competent embryo for the creation of stem cells."

Of great interest is the potential for developing an unlimited number of one type of neuron. These neurons could eventually pave the way for the treatment of Parkinson’s disease.

The neurons synthesize a neurotransmitter called dopamine, and are impaired in people with Parkinson’s disease.

"Clinical transplantation of specific fetal neurons has shown promise in the treatment of Parkinson’s and Huntington’s disease," said Vrana, "but obtaining such cells from animals or human fetal brain remains problematic." Obtaining cells produced in the laboratory from stem cells that come from parthenotes "could alleviate some of the ethical and technical concerns of human cell therapy."

Vrana said the striking ability of these stem cells derived from parthenotes to differentiate suggest a valid alternative to stem cells derived from normal fertilization.

To test whether the stem cells were "pluripotent" -- able to produce any cells -- the stem cells were injected into a mouse without a functioning immune system. The cells produced all three of the body’s cell layers: ectoderm (neuron, skin and hair follicles), mesoderm (cartilage, muscle and bone) and endoderm (intestinal epithelia), according to Jose Cibelli, professor of animal science at Michigan State University and co-author.

Moreover, the monkey stem cells have a normal number of chromosomes, Vrana said.

Parthenogenesis is not new biologically, but it is unknown in mammals. "Flies, ants, lizards, snakes, birds, reptiles, amphibians, honeybees and crayfish routinely reproduce in this manner. Placental mammals are not capable of this form of reproduction," said Vrana.



Among other members of the team were Ashley Goss, undergraduate student, Kathleen A. Grant, Ph.D., professor, Brian A. McCool, Ph.D., and Stephen J. Walker, Ph.D., assistant professors of physiology and pharmacology, and David Riddle, Ph.D., assistant professor of neurobiology and anatomy, all from Wake Forest; Peter Wettstein from the Department of Microbiology and Immunology at the Mayo Clinic; Lorenz Studer and Viviane Tabor from the Sloan Kettering Cancer Center in New York; Kerrianne Cunniff from Millennium Pharmaceuticals in Cambridge, Mass.; and Michael D. West and other researchers from Advanced Cell Technology in Worcester, Mass.

Additional Contact: Karen Richardson (rchrdsn@wfubmc.edu) at (336) 716-4587

Robert Conn | EurekAlert!
Further information:
http://www.wfubmc.edu/

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>