Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Looking for love in all the right places: Fruit odors lure some flies to evolve into new species, Cornell researchers discover

23.09.2003


For apple maggots, the dating scene is simple -- flies only mate on a specific host fruit. Using new technology developed at the New York State Agricultural Experiment Station, Cornell University researchers have demonstrated that this fact of fly life has resulted in the emergence of two distinct races of the pest in just 150 years.



In research published in the Online Early Edition of the Proceedings of the National Academy of Sciences Web site Sept. 22, the scientists show that one mechanism by which these flies find their host plant is a preference for specific blends of fruit odors. The preference is both strong enough and sensitive enough that the two races of maggot no longer interbreed, the first step in the evolution of a new species. The discovery, the researchers say, opens up a possible new area of organic pest control.

The researchers at the Geneva Experiment Station, part of the College of Agriculture and Life Sciences at Cornell, Ithaca, N.Y., are Charles Linn, Satoshi Nojima and Wendell Roelofs. Their collaborators are Jeffrey Feder from the University of Notre Dame and Stewart Berlocher from the University of Illinois.


Evolutionary biologists theorize that two populations of a species must be isolated from each other if they are to develop into two distinct species, and Darwin provided the example of one species of bird diverging and becoming reproductively isolated on separate islands in the Galapagos. Recently it has been proposed that the separation need not be geographic or even physical. A shift in the use of a new host plant for mating and the laying of eggs could be enough to keep insects that occupy the same area at the same time from mating. This process is termed "sympatric speciation," and that is what the researchers believe has happened with hawthorn maggots.

The apple and hawthorn maggots are common names for the same species, Rhagoletis pomonella . The pest and the hawthorn plant are native to North America, but the apples they now infest were introduced from Europe around 250 years ago. During the 1860s, in New York’s Champlain Valley, some hawthorn flies shifted to apple plants as their host, while others did not."There are no morphological differences between the two, so they are still the same species, but two races can be distinguished by looking at the diversity of protein structures of whole populations and by the specificity of individual flies to different host plants," explained Roelofs, who is the Liberty Hyde Bailey Professor of Insect Biochemistry at Cornell.

R. pomonella has been studied for many years, but it was only with the development by postdoctoral researcher Nojima of sophisticated laboratory techniques to select the key components of fruit odors that the behavior of the insects could be rigorously tested.

Using a process called solid phase microextraction, volatiles were absorbed from the fruit and identified in a gas chromatograph using a live insect’s own antennae as part of the detection process to determine which volatiles the flies use for host-plant identification. Once key compounds were identified, Linn ran behavioral tests in a flight tunnel. Blends of the apple and hawthorn volatiles identified in the lab were synthesized and then tested for insect behavior. If the insect recognized the test odor, it oriented itself toward the source and flew upwind to reach it. The scientists found that almost exclusively apple maggots only responded to apple odors, and hawthorn maggots only responded to hawthorn odors.

Behavioral tests also were conducted in the field. Traps were baited with one of the two blends and placed in hawthorn stands and apple orchards. Just as in the lab, the flies of one race largely ignored, or even avoided, the chemical scent of the other race’s fruit.

"The results in the field are really very strong," said Linn. "It adds a level of validation that we also saw the same pattern in field trials in Michigan and Indiana."

In addition to the impact on ecology and evolutionary biology, the research has several applications. Other scientists at Cornell already are using the blends developed in this research to monitor populations of hawthorn and apple maggots in orchards and fields across New York state.

The team also identified several components of hawthorn and flowering dogwood -- a third member of the R. pomonella species complex. These blends are not simply ignored; some actually deter apple maggots. Roelofs’ lab has begun field trials to see if introducing the dogwood and hawthorn odor, or components of it, into apple orchards or around the fruit itself could provide a means of organic pest control against the apple maggot.

The research was funded by a $1.6 million grant from the National Science Foundation.

Linda McCandless | Cornell News
Further information:
http://www.news.cornell.edu/releases/Sept03/applemaggots.pnas.lm.html
http://www.nysaes.cornell.edu/pubs/press/current

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>