Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Looking for love in all the right places: Fruit odors lure some flies to evolve into new species, Cornell researchers discover

23.09.2003


For apple maggots, the dating scene is simple -- flies only mate on a specific host fruit. Using new technology developed at the New York State Agricultural Experiment Station, Cornell University researchers have demonstrated that this fact of fly life has resulted in the emergence of two distinct races of the pest in just 150 years.



In research published in the Online Early Edition of the Proceedings of the National Academy of Sciences Web site Sept. 22, the scientists show that one mechanism by which these flies find their host plant is a preference for specific blends of fruit odors. The preference is both strong enough and sensitive enough that the two races of maggot no longer interbreed, the first step in the evolution of a new species. The discovery, the researchers say, opens up a possible new area of organic pest control.

The researchers at the Geneva Experiment Station, part of the College of Agriculture and Life Sciences at Cornell, Ithaca, N.Y., are Charles Linn, Satoshi Nojima and Wendell Roelofs. Their collaborators are Jeffrey Feder from the University of Notre Dame and Stewart Berlocher from the University of Illinois.


Evolutionary biologists theorize that two populations of a species must be isolated from each other if they are to develop into two distinct species, and Darwin provided the example of one species of bird diverging and becoming reproductively isolated on separate islands in the Galapagos. Recently it has been proposed that the separation need not be geographic or even physical. A shift in the use of a new host plant for mating and the laying of eggs could be enough to keep insects that occupy the same area at the same time from mating. This process is termed "sympatric speciation," and that is what the researchers believe has happened with hawthorn maggots.

The apple and hawthorn maggots are common names for the same species, Rhagoletis pomonella . The pest and the hawthorn plant are native to North America, but the apples they now infest were introduced from Europe around 250 years ago. During the 1860s, in New York’s Champlain Valley, some hawthorn flies shifted to apple plants as their host, while others did not."There are no morphological differences between the two, so they are still the same species, but two races can be distinguished by looking at the diversity of protein structures of whole populations and by the specificity of individual flies to different host plants," explained Roelofs, who is the Liberty Hyde Bailey Professor of Insect Biochemistry at Cornell.

R. pomonella has been studied for many years, but it was only with the development by postdoctoral researcher Nojima of sophisticated laboratory techniques to select the key components of fruit odors that the behavior of the insects could be rigorously tested.

Using a process called solid phase microextraction, volatiles were absorbed from the fruit and identified in a gas chromatograph using a live insect’s own antennae as part of the detection process to determine which volatiles the flies use for host-plant identification. Once key compounds were identified, Linn ran behavioral tests in a flight tunnel. Blends of the apple and hawthorn volatiles identified in the lab were synthesized and then tested for insect behavior. If the insect recognized the test odor, it oriented itself toward the source and flew upwind to reach it. The scientists found that almost exclusively apple maggots only responded to apple odors, and hawthorn maggots only responded to hawthorn odors.

Behavioral tests also were conducted in the field. Traps were baited with one of the two blends and placed in hawthorn stands and apple orchards. Just as in the lab, the flies of one race largely ignored, or even avoided, the chemical scent of the other race’s fruit.

"The results in the field are really very strong," said Linn. "It adds a level of validation that we also saw the same pattern in field trials in Michigan and Indiana."

In addition to the impact on ecology and evolutionary biology, the research has several applications. Other scientists at Cornell already are using the blends developed in this research to monitor populations of hawthorn and apple maggots in orchards and fields across New York state.

The team also identified several components of hawthorn and flowering dogwood -- a third member of the R. pomonella species complex. These blends are not simply ignored; some actually deter apple maggots. Roelofs’ lab has begun field trials to see if introducing the dogwood and hawthorn odor, or components of it, into apple orchards or around the fruit itself could provide a means of organic pest control against the apple maggot.

The research was funded by a $1.6 million grant from the National Science Foundation.

Linda McCandless | Cornell News
Further information:
http://www.news.cornell.edu/releases/Sept03/applemaggots.pnas.lm.html
http://www.nysaes.cornell.edu/pubs/press/current

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>