Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Looking for love in all the right places: Fruit odors lure some flies to evolve into new species, Cornell researchers discover

23.09.2003


For apple maggots, the dating scene is simple -- flies only mate on a specific host fruit. Using new technology developed at the New York State Agricultural Experiment Station, Cornell University researchers have demonstrated that this fact of fly life has resulted in the emergence of two distinct races of the pest in just 150 years.



In research published in the Online Early Edition of the Proceedings of the National Academy of Sciences Web site Sept. 22, the scientists show that one mechanism by which these flies find their host plant is a preference for specific blends of fruit odors. The preference is both strong enough and sensitive enough that the two races of maggot no longer interbreed, the first step in the evolution of a new species. The discovery, the researchers say, opens up a possible new area of organic pest control.

The researchers at the Geneva Experiment Station, part of the College of Agriculture and Life Sciences at Cornell, Ithaca, N.Y., are Charles Linn, Satoshi Nojima and Wendell Roelofs. Their collaborators are Jeffrey Feder from the University of Notre Dame and Stewart Berlocher from the University of Illinois.


Evolutionary biologists theorize that two populations of a species must be isolated from each other if they are to develop into two distinct species, and Darwin provided the example of one species of bird diverging and becoming reproductively isolated on separate islands in the Galapagos. Recently it has been proposed that the separation need not be geographic or even physical. A shift in the use of a new host plant for mating and the laying of eggs could be enough to keep insects that occupy the same area at the same time from mating. This process is termed "sympatric speciation," and that is what the researchers believe has happened with hawthorn maggots.

The apple and hawthorn maggots are common names for the same species, Rhagoletis pomonella . The pest and the hawthorn plant are native to North America, but the apples they now infest were introduced from Europe around 250 years ago. During the 1860s, in New York’s Champlain Valley, some hawthorn flies shifted to apple plants as their host, while others did not."There are no morphological differences between the two, so they are still the same species, but two races can be distinguished by looking at the diversity of protein structures of whole populations and by the specificity of individual flies to different host plants," explained Roelofs, who is the Liberty Hyde Bailey Professor of Insect Biochemistry at Cornell.

R. pomonella has been studied for many years, but it was only with the development by postdoctoral researcher Nojima of sophisticated laboratory techniques to select the key components of fruit odors that the behavior of the insects could be rigorously tested.

Using a process called solid phase microextraction, volatiles were absorbed from the fruit and identified in a gas chromatograph using a live insect’s own antennae as part of the detection process to determine which volatiles the flies use for host-plant identification. Once key compounds were identified, Linn ran behavioral tests in a flight tunnel. Blends of the apple and hawthorn volatiles identified in the lab were synthesized and then tested for insect behavior. If the insect recognized the test odor, it oriented itself toward the source and flew upwind to reach it. The scientists found that almost exclusively apple maggots only responded to apple odors, and hawthorn maggots only responded to hawthorn odors.

Behavioral tests also were conducted in the field. Traps were baited with one of the two blends and placed in hawthorn stands and apple orchards. Just as in the lab, the flies of one race largely ignored, or even avoided, the chemical scent of the other race’s fruit.

"The results in the field are really very strong," said Linn. "It adds a level of validation that we also saw the same pattern in field trials in Michigan and Indiana."

In addition to the impact on ecology and evolutionary biology, the research has several applications. Other scientists at Cornell already are using the blends developed in this research to monitor populations of hawthorn and apple maggots in orchards and fields across New York state.

The team also identified several components of hawthorn and flowering dogwood -- a third member of the R. pomonella species complex. These blends are not simply ignored; some actually deter apple maggots. Roelofs’ lab has begun field trials to see if introducing the dogwood and hawthorn odor, or components of it, into apple orchards or around the fruit itself could provide a means of organic pest control against the apple maggot.

The research was funded by a $1.6 million grant from the National Science Foundation.

Linda McCandless | Cornell News
Further information:
http://www.news.cornell.edu/releases/Sept03/applemaggots.pnas.lm.html
http://www.nysaes.cornell.edu/pubs/press/current

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>