Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery may be first plant cell surface molecule that halts cell proliferation

22.09.2003


Protein contains both ’on’ and ’off’ switches



University of North Carolina at Chapel Hill scientists have discovered a unique protein on the surface membrane of plant cells, one that apparently contains both "on" and "off" molecular switches. Apart from its unique structure, the protein may be the first cell surface membrane receptor ever discovered in plants that regulates a key protein complex involved in cell growth and division. Known as the heterotrimeric G protein complex, it also is present in mammalian cells, including human.

The protein, known as AtRGS1, regulates the process of cell proliferation by turning the G protein complex off. A report of the discovery appears in today’s (Sept. 19) issue of the journal Science.


The protein was discovered in Arabidopsis thaliana, a wild mustard weed. Completion of the Arabidopsis genome sequence in 2000, the first for a higher plant, made it ideal for molecular investigation such as this. In addition, this small weed has homologues or counterparts of many important human proteins, including some involved in diseases, such as cystic fibrosis and cancer.

"We have identified the first and a truly novel regulator of G protein signaling, or RGS signaling protein, in Arabidopsis," said Dr. Jin-Gui Chen, senior research associate in the department of biology and the report’s first author. "This finding can be considered a breakthrough in G protein signaling."

Roughly 800 types of these cell receptors exist in human cells, said plant cell biologist Dr. Alan M. Jones, a senior study author and professor of biology in UNC’s College of Arts and Sciences.

"These are the molecular targets for about half of the drugs in use today worldwide, which account for $9 billion a year in sales." Teasing out the complexities of how signals are transduced into action within cells also holds implications for agriculture. "The new RGS protein’s function in the G protein signaling pathway may give us a handle on how fast plant organs can produce cells," said Jones.

"Indeed, this particular pathway is a growth pathway, and now we have another player [AtRGS1] we can utilize to bioengineer crops." Previous studies of mammalian cells had provided hints that G protein coupled receptors and RGS proteins are intimately linked functionally, said the other senior author of the study, Dr. David P. Siderovski. He is an assistant professor of pharmacology and a member of UNC’s Lineberger Comprehensive Center, part of UNC’s School of Medicine.

"And this study is the ultimate proof because they are intimately linked structurally," he added. "This really sets the paradigm clearly in the minds of all of us studying this signaling. For a long time there have been hints of receptor-specific recruitment of these RGS proteins. But plants have really slapped us awake to this because they’re one polypeptide; they’re actually conjoint."

The new study exemplifies UNC’s research strength in G protein signaling, including RGS proteins. Siderovski and Dr. Henrik G. Dohlman, associate professor of biochemistry and biophysics, were the first to independently discover this class of proteins nearly eight years ago.

Dohlman found the first such protein in yeast, while Siderovski had found similar proteins in humans.

Jones, who for many years has been studying the plant components equivalent to the G protein complex in mammals, asked Siderovski to explore the Arabidopsis data base for a G protein coupled receptor. In searching through protein sequences on a computer screen, Siderovski said he stumbled upon a divergent form of RGS protein in Arabidopsis, one with features of both a cell-surface receptor and an RGS protein. Dohlman, whose laboratory tested the function of the new protein in yeast, said a common theme in biology is that every ’on’ switch has an ’off’ switch. "What’s unique about this particular protein is it seems to contain elements of both the ’on’ switch and ’off’ switch in the same molecule. And this is unprecedented," he said.

"The classic paradigm is you have a cell surface receptor that activates a pathway by binding some molecule, such as calcium or a hormone," said Jones. "Here we have a ’CatDog’ phenomenon," he added, referring to a popular TV cartoon series, "a putative receptor that has the structural features of both an activator and an RGS-like deactivator."

Still, the researchers said, two interpretations may operate here. One is that the switches are simply physically linked. Or it could be that the ’off’ switch and the ’on’ switch are each regulated by external signals. They agree, however, that either scenario is extremely exciting.

"I think this opens up a new paradigm that may not be specific or unique to the plant cell. I would not be surprised if we find it in human cells," said Jones.

Other co-authors are Dr. Francis S. Willard, from the department of pharmacology and the Lineberger Center; Dr. Scott A. Chasse, a trainee with Dohlman from biochemistry and biophysics; and Jirong Huang and Jiansheng Liang, from the department of biology. Support for this research came from the National Institute of General Medical Sciences and the National Science Foundation via grants awarded to Siderovski, Dohlman and Jones.


Note: Contact Jones at (919) 962-6932 or alan_jones@unc.edu. Contact Siderovski at (919) 843-9363 or david_siderovski@med.unc.edu. Contact Dohlman at (919) 843-6894 or henrik_dohlman@med.unc.edu.

School of Medicine contact: Les Lang, (919) 843-9687 or llang@med.unc.edu

Leslie Lang | EurekAlert!
Further information:
http://www.med.unc.edu/

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>