Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery may be first plant cell surface molecule that halts cell proliferation

22.09.2003


Protein contains both ’on’ and ’off’ switches



University of North Carolina at Chapel Hill scientists have discovered a unique protein on the surface membrane of plant cells, one that apparently contains both "on" and "off" molecular switches. Apart from its unique structure, the protein may be the first cell surface membrane receptor ever discovered in plants that regulates a key protein complex involved in cell growth and division. Known as the heterotrimeric G protein complex, it also is present in mammalian cells, including human.

The protein, known as AtRGS1, regulates the process of cell proliferation by turning the G protein complex off. A report of the discovery appears in today’s (Sept. 19) issue of the journal Science.


The protein was discovered in Arabidopsis thaliana, a wild mustard weed. Completion of the Arabidopsis genome sequence in 2000, the first for a higher plant, made it ideal for molecular investigation such as this. In addition, this small weed has homologues or counterparts of many important human proteins, including some involved in diseases, such as cystic fibrosis and cancer.

"We have identified the first and a truly novel regulator of G protein signaling, or RGS signaling protein, in Arabidopsis," said Dr. Jin-Gui Chen, senior research associate in the department of biology and the report’s first author. "This finding can be considered a breakthrough in G protein signaling."

Roughly 800 types of these cell receptors exist in human cells, said plant cell biologist Dr. Alan M. Jones, a senior study author and professor of biology in UNC’s College of Arts and Sciences.

"These are the molecular targets for about half of the drugs in use today worldwide, which account for $9 billion a year in sales." Teasing out the complexities of how signals are transduced into action within cells also holds implications for agriculture. "The new RGS protein’s function in the G protein signaling pathway may give us a handle on how fast plant organs can produce cells," said Jones.

"Indeed, this particular pathway is a growth pathway, and now we have another player [AtRGS1] we can utilize to bioengineer crops." Previous studies of mammalian cells had provided hints that G protein coupled receptors and RGS proteins are intimately linked functionally, said the other senior author of the study, Dr. David P. Siderovski. He is an assistant professor of pharmacology and a member of UNC’s Lineberger Comprehensive Center, part of UNC’s School of Medicine.

"And this study is the ultimate proof because they are intimately linked structurally," he added. "This really sets the paradigm clearly in the minds of all of us studying this signaling. For a long time there have been hints of receptor-specific recruitment of these RGS proteins. But plants have really slapped us awake to this because they’re one polypeptide; they’re actually conjoint."

The new study exemplifies UNC’s research strength in G protein signaling, including RGS proteins. Siderovski and Dr. Henrik G. Dohlman, associate professor of biochemistry and biophysics, were the first to independently discover this class of proteins nearly eight years ago.

Dohlman found the first such protein in yeast, while Siderovski had found similar proteins in humans.

Jones, who for many years has been studying the plant components equivalent to the G protein complex in mammals, asked Siderovski to explore the Arabidopsis data base for a G protein coupled receptor. In searching through protein sequences on a computer screen, Siderovski said he stumbled upon a divergent form of RGS protein in Arabidopsis, one with features of both a cell-surface receptor and an RGS protein. Dohlman, whose laboratory tested the function of the new protein in yeast, said a common theme in biology is that every ’on’ switch has an ’off’ switch. "What’s unique about this particular protein is it seems to contain elements of both the ’on’ switch and ’off’ switch in the same molecule. And this is unprecedented," he said.

"The classic paradigm is you have a cell surface receptor that activates a pathway by binding some molecule, such as calcium or a hormone," said Jones. "Here we have a ’CatDog’ phenomenon," he added, referring to a popular TV cartoon series, "a putative receptor that has the structural features of both an activator and an RGS-like deactivator."

Still, the researchers said, two interpretations may operate here. One is that the switches are simply physically linked. Or it could be that the ’off’ switch and the ’on’ switch are each regulated by external signals. They agree, however, that either scenario is extremely exciting.

"I think this opens up a new paradigm that may not be specific or unique to the plant cell. I would not be surprised if we find it in human cells," said Jones.

Other co-authors are Dr. Francis S. Willard, from the department of pharmacology and the Lineberger Center; Dr. Scott A. Chasse, a trainee with Dohlman from biochemistry and biophysics; and Jirong Huang and Jiansheng Liang, from the department of biology. Support for this research came from the National Institute of General Medical Sciences and the National Science Foundation via grants awarded to Siderovski, Dohlman and Jones.


Note: Contact Jones at (919) 962-6932 or alan_jones@unc.edu. Contact Siderovski at (919) 843-9363 or david_siderovski@med.unc.edu. Contact Dohlman at (919) 843-6894 or henrik_dohlman@med.unc.edu.

School of Medicine contact: Les Lang, (919) 843-9687 or llang@med.unc.edu

Leslie Lang | EurekAlert!
Further information:
http://www.med.unc.edu/

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>