Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers now on road to isolating skin stem cells


Researchers at the San Francisco VA Medical Center (SFVAMC) have taken the first major step toward isolating adult stem cells from mouse skin, having developed a test that confirms the presence and number of stem cells in a given amount of tissue. Until now, such a technique has only existed for isolating adult stem cells found in blood.

"This assay has opened up a whole new avenue of research," said Ruby Ghadially, MD, SFVAMC staff physician and UCSF associate professor of dermatology. "If you can determine how many stem cells you have, then you can identify distinguishing characteristics that will allow you to isolate the cells. We could then potentially use these cells as effective carrier cells for gene therapy and, someday, use them to produce new stem cells for treating burns and wounds in the skin," Ghadially said.

The study was published online September 17 in the Proceedings of the National Academy of Sciences’s online early edition, and will appear in the print version of the journal September 30.

Stem cells are the body’s unspecialized cells, which give rise to the specialized cell types that make up an organism. Embryonic stem cells emerge in the first days of an embryo’s development, and have the potential to differentiate, or specialize, into each of the 200 types of tissue in the body. Adult stem cells are unspecialized cells found in specialized tissues throughout the body, including bone marrow, skin and the pancreas, among others. They can reproduce themselves as well as give rise to all the cell types of the tissue in which they are found. Scientists are working to take advantage of the natural properties of stem cells in order to develop ways of repairing or replacing the cells of damaged tissues and organs.

Knowing the number of stem cells allows researchers to look for cell-surface molecules, or markers, that distinguish stem cells from specialized cells. This allows researchers to isolate stem cells from specialized cells and investigate ways of taking advantage of their ability to make new specialized cells. For example, stem cells isolated from the blood are now being used to treat cancer patients whose blood cells are damaged by radiation treatment or chemotherapy. Stem cells taken from either the patient before treatment or from a donor are transplanted into the patient following treatment where they make new blood cells.

Using the new assay for skin stem cells, the researchers found that the bottom layer of skin, called the basal epidermis, had the same number of stem cells as found in bone marrow: about one in every 10,000 cells. The assay relies on the same concepts as those used to quantify stem cells in blood. Researchers placed skin cells from two donor mice onto a patch of denuded skin of a third mouse. The cells from one donor were labeled with green fluorescent protein (GFP). The differentiated cells that make up the layers of the skin died off as expected, while stem cells, which are permanent, produced new differentiated cells that replaced the ones that died. So, to confirm the presence of stem cells in their test mice, researchers looked for those cells that still glowed green after a month.

To estimate the number of cells in basal epidermis, researchers kept the number of cells of the non-labeled donor constant over a number of host mice. But, they varied the number of the GFP cells to see how small a sample they could add before they saw no green stem cells after a month’s time. This process, called limiting dilution, gave them the ratio of stem cells to differentiated cells in their GFP samples.

According to Ghadially, research using stem cells from the blood is 20 years ahead of other stem cell research, largely because researchers have a similar assay they use to quantify the number of stem cells in a given sample. "We know a lot about stem cells in the blood and that’s because we can get our hands on them. Now we can determine which markers distinguish stem cells from differentiated skin cells, which will eventually allow us to isolate skin stem cells," Ghadially said.

The eventual isolation of skin stem cells, Ghadially said, promises to allow the treatment of wounds, including burns, through transplantation of stem cells directly onto the damaged area where new skin will grow. It may take decades, but Ghadially predicts researchers also will be able to prompt skin stem cells to produce more stem cells in the same way researchers have been able to do with stem cells taken from the blood. Also, isolating epidermal stem cells will allow skin researchers to better understand the process by which skin cells differentiate and, since skin cancer likely originates in stem cells, better understand--and maybe someday better treat--skin cancer.

Additional authors include Tracy E. Schneider, BS, Chantal Barland, MD, and April M. Alex, MS, of the UCSF Department of Dermatology; Ying Lu, PhD, statistician and James E. Cleaver, PhD, researcher of the UCSF Comprehensive Cancer Center; H. Jeffrey Lawrence, MD, SFVAMC staff physician and UCSF professor of medicine; and Maria L. Mancianti, MD, of the Department of Pathology, Alta Bates Medical Center, Berkeley, CA.

This research was supported by two grants to Ghadially from the National Institutes of Health and a Department of Veterans Affairs Merit Review Program Award.

Camille Mojica Rey | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>