Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers now on road to isolating skin stem cells

22.09.2003


Researchers at the San Francisco VA Medical Center (SFVAMC) have taken the first major step toward isolating adult stem cells from mouse skin, having developed a test that confirms the presence and number of stem cells in a given amount of tissue. Until now, such a technique has only existed for isolating adult stem cells found in blood.



"This assay has opened up a whole new avenue of research," said Ruby Ghadially, MD, SFVAMC staff physician and UCSF associate professor of dermatology. "If you can determine how many stem cells you have, then you can identify distinguishing characteristics that will allow you to isolate the cells. We could then potentially use these cells as effective carrier cells for gene therapy and, someday, use them to produce new stem cells for treating burns and wounds in the skin," Ghadially said.

The study was published online September 17 in the Proceedings of the National Academy of Sciences’s online early edition, and will appear in the print version of the journal September 30.


Stem cells are the body’s unspecialized cells, which give rise to the specialized cell types that make up an organism. Embryonic stem cells emerge in the first days of an embryo’s development, and have the potential to differentiate, or specialize, into each of the 200 types of tissue in the body. Adult stem cells are unspecialized cells found in specialized tissues throughout the body, including bone marrow, skin and the pancreas, among others. They can reproduce themselves as well as give rise to all the cell types of the tissue in which they are found. Scientists are working to take advantage of the natural properties of stem cells in order to develop ways of repairing or replacing the cells of damaged tissues and organs.

Knowing the number of stem cells allows researchers to look for cell-surface molecules, or markers, that distinguish stem cells from specialized cells. This allows researchers to isolate stem cells from specialized cells and investigate ways of taking advantage of their ability to make new specialized cells. For example, stem cells isolated from the blood are now being used to treat cancer patients whose blood cells are damaged by radiation treatment or chemotherapy. Stem cells taken from either the patient before treatment or from a donor are transplanted into the patient following treatment where they make new blood cells.

Using the new assay for skin stem cells, the researchers found that the bottom layer of skin, called the basal epidermis, had the same number of stem cells as found in bone marrow: about one in every 10,000 cells. The assay relies on the same concepts as those used to quantify stem cells in blood. Researchers placed skin cells from two donor mice onto a patch of denuded skin of a third mouse. The cells from one donor were labeled with green fluorescent protein (GFP). The differentiated cells that make up the layers of the skin died off as expected, while stem cells, which are permanent, produced new differentiated cells that replaced the ones that died. So, to confirm the presence of stem cells in their test mice, researchers looked for those cells that still glowed green after a month.

To estimate the number of cells in basal epidermis, researchers kept the number of cells of the non-labeled donor constant over a number of host mice. But, they varied the number of the GFP cells to see how small a sample they could add before they saw no green stem cells after a month’s time. This process, called limiting dilution, gave them the ratio of stem cells to differentiated cells in their GFP samples.

According to Ghadially, research using stem cells from the blood is 20 years ahead of other stem cell research, largely because researchers have a similar assay they use to quantify the number of stem cells in a given sample. "We know a lot about stem cells in the blood and that’s because we can get our hands on them. Now we can determine which markers distinguish stem cells from differentiated skin cells, which will eventually allow us to isolate skin stem cells," Ghadially said.

The eventual isolation of skin stem cells, Ghadially said, promises to allow the treatment of wounds, including burns, through transplantation of stem cells directly onto the damaged area where new skin will grow. It may take decades, but Ghadially predicts researchers also will be able to prompt skin stem cells to produce more stem cells in the same way researchers have been able to do with stem cells taken from the blood. Also, isolating epidermal stem cells will allow skin researchers to better understand the process by which skin cells differentiate and, since skin cancer likely originates in stem cells, better understand--and maybe someday better treat--skin cancer.

Additional authors include Tracy E. Schneider, BS, Chantal Barland, MD, and April M. Alex, MS, of the UCSF Department of Dermatology; Ying Lu, PhD, statistician and James E. Cleaver, PhD, researcher of the UCSF Comprehensive Cancer Center; H. Jeffrey Lawrence, MD, SFVAMC staff physician and UCSF professor of medicine; and Maria L. Mancianti, MD, of the Department of Pathology, Alta Bates Medical Center, Berkeley, CA.



This research was supported by two grants to Ghadially from the National Institutes of Health and a Department of Veterans Affairs Merit Review Program Award.

Camille Mojica Rey | EurekAlert!
Further information:
http://www.ucsf.edu/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>