Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Built-in eyeshade offers clue to prehistoric past

19.09.2003


A new, rare fossil of a prehistoric sea creature bearing eyes like "twin towers" sheds light on how it lived more than 395 million years ago, says a University of Alberta researcher.



Dr. Brian Chatterton, one of the world’s leading experts on trilobites and a professor in the U of A’s Faculty of Science, reports on the discovery of the only known complete specimen of a particular trilobite in this week’s edition of the prestigious scientific journal Science.

Trilobites were among the most active animals in the sea--they ran around the sea floor and occasionally burrowed in the sediment or swam around. They had eyes similar to those of their distant relatives, the insects, but they also had antennae, making it possible to see and touch the world around them.


Chatterton was recently contacted by Richard Fortey of the Natural History Museum in London after a commercial dealer offered the specimen--phacopoid trilobite Erbenochile----found in Morocco, for sale. Fortey turned to Chatterton to learn exactly what and how rare the specimen was. They soon discovered that its several exaggerated and unique features made it of "more than normal interest" to paleontologists.

Unlike other trilobites eyes, the giant eyes on this specimen stand up like twin towers or have extensions of their palpebral lobes that stretch outward above the eye.

"These lobes would have acted like a lens shade on a camera or a baseball hat brim on humans. They prevented unwanted light from entering the lenses which would otherwise bounce around and cause a fuzziness in the image seen by the trilobite animal," said Chatterton. "These trilobites lived at a time--395 million years ago--when large predatory fishes capable of crushing shelled animals were becoming common for the first time, and perhaps acute vision allowed these trilobites to escape or hide from being eaten."

Despite some suggestion that the species was nocturnal, this finding shows that the trilobite may have operated during daylight hours. Distinct and unusual features seldom appear in evolution as random occurrences without offering some practical use, said Chatterton.

Since most of our knowledge of the world at the time of this trilobite is based on the fossils preserved on what was the sea floor of the ancient continental shelves, this discovery is an interesting new feature that helps us understand how some animals lived centuries ago.

Phoebe Dey | EurekAlert!
Further information:
http://www.ualberta.ca/

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>