Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When mechanical stress alters developmental gene expression

17.09.2003


In the fly embryo, the Twist gene is normally expressed only in the ventral region (above)
When rhe embryo is pressed between two slides (below) in the dorsal region.

In this and the following plate, Twist proteins and ß catenin are labeled with a fluorescent green protein


The pressure of the embryo perturbs the localization of ß catenin, a protein which ensures cohesion between cells within tissues.
When mechanical pressure is applied to the embryo, ß catenin enters the cell nucleus (on right), whereas to perform its role as an "adhesive" between cells it must be on the cell surface.


During its growth, an embryo changes shape under the control of the so-called developmental genes. Emmanuel Farge, a researcher at the Institut Curie, lecturer at the Paris VII University, and member of the Institut Universitaire de France, has just shown that mechanical pressure applied to a fly embryo influences the expression of its developmental genes. So not everything is purely genetic and some features of the living cell are also mechano-sensitive.

It remains to be seen whether this phenomenon also applies to human tissues. And could the growth of a tumor that compresses tissues play a role in gene deregulation?
These results published in the 19 August issue of Current Biology are likely to change the way geneticists think.


The life of all living organisms starts from a single cell. Each cell subsequently undergoes changes enabling it to find its place and assume its role. The cells have the same genetic make-up but follow different routes and fulfill distinct activities: they differentiate. To achieve this they activate or suppress the production of specific proteins. What are the signals that determine the function of cells? How does a cell become a building block in the stomach or in the brain?

For almost 50 years biologists thought that everything was written in the genes. And then along came epigenetics1. Ever since it seems to have been agreed that chemical modifications occurring around the DNA molecule can lead to changes on the scale of the organism.

Epigenetic processes even appear to impose the switching on and off of a gene. In a word, epigenetics underpins the programming of cells. These new theories clearly undermined the dogma of "everything is genetic", and now Emmanuel Farge at the Institut Curie has weakened it even further.

There are not only genes…

An embryo has a particular shape at each stage of its development. These successive deformations exert mechanical pressures on the embryo. Yet is this their only consequence? Can they influence, even regulate, the expression of developmental genes?

This is the question posed by Emmanuel Farge2, in his studies of embryonic development of Drosophila, the fruit fly so prized by biologists.

Emmanuel Farge is interested in the Twist gene, which is essential for embryonic development in Drosophila (see box below) and whose human equivalent is involved in the development of certain cancers.

This gene is normally expressed only in cells located ventrally in the embryo. But on applying mechanical pressure to the Drosophila embryo, Emmanuel Farge noted that the Twist gene was then expressed in all the embryo’s cells. Although fleeting, this activation has important consequences since it blocks embryonic development.

It therefore seems that mechanical pressure exerted on the embryo perturbs essential cellular processes. Emmanuel Farge has shown that one of the pathways affected is that of b catenin, a protein whose function is two-fold: it acts both as an anchor ensuring cohesion between cells in tissues and as a transcription factor which can stimulate the expression of certain genes. b catenin could be the link between mechanical pressure and genes.

According to Emmanuel Farge, during normal embryonic development the formation of one of the intermediate layers, the mesoderm, exerts pressure on the anterior region of the embryo and so leads to the expression of the Twist gene. Significantly, the Twist gene is not expressed in mutant embryos in which this mechanical pressure is absent.

This is the first time that a mechanical constraint has been shown to influence the genetic control of the development of Drosophila embryo. Genes are therefore not alone in influencing development. Henceforth it will be necessary to take into account the mechanical sensitivity of living cells.

This discovery in the development of the Drosophila embryo opens up new fields of research and raises numerous questions:

Can other genes be influenced? What of human tissues? Could such pressures, caused, for example, by a tumor mass, perturb the expression of certain genes?

Reference

"Mechanical Induction of Twist in the Drosophila Foregut/Stomodeal Primordium"
Emmanuel Farge
Current biology (www.current-biology.com), vol 13, pp 1365-1377, 19 August 2003
1Institut Universitaire de France, Université Paris VII, Mechanics and Genetics of Developmental Embryogenesis Group, UMR 168 CNRS/Institut Curie.

Notes

1 Epigenetics covers all biological phenomena not strictly determined by the genetic material. Epigenetic variations affect the organism’s phenotype without altering its genotype.
2 Associate Professor at the Paris VII University, biologist and physicist in the research unit UMR 168 CNRS/Institut Curie Physical Chemistry "Curie" headed by Jean-François Joanny.


Press contacts
Institut Curie
Press Relations
Catherine Goupillon
Phone 01 44 32 40 63
service.presse@curie.fr

Céline Giustranti
Phone 01 44 32 40 64
Fax 01 44 32 41 67

Artwork
Cécile Charré
Phone 01 44 32 40 51

Catherine Goupillon | Institut Curie
Further information:
http://www.curie.fr

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>