Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When mechanical stress alters developmental gene expression

17.09.2003


In the fly embryo, the Twist gene is normally expressed only in the ventral region (above)
When rhe embryo is pressed between two slides (below) in the dorsal region.

In this and the following plate, Twist proteins and ß catenin are labeled with a fluorescent green protein


The pressure of the embryo perturbs the localization of ß catenin, a protein which ensures cohesion between cells within tissues.
When mechanical pressure is applied to the embryo, ß catenin enters the cell nucleus (on right), whereas to perform its role as an "adhesive" between cells it must be on the cell surface.


During its growth, an embryo changes shape under the control of the so-called developmental genes. Emmanuel Farge, a researcher at the Institut Curie, lecturer at the Paris VII University, and member of the Institut Universitaire de France, has just shown that mechanical pressure applied to a fly embryo influences the expression of its developmental genes. So not everything is purely genetic and some features of the living cell are also mechano-sensitive.

It remains to be seen whether this phenomenon also applies to human tissues. And could the growth of a tumor that compresses tissues play a role in gene deregulation?
These results published in the 19 August issue of Current Biology are likely to change the way geneticists think.


The life of all living organisms starts from a single cell. Each cell subsequently undergoes changes enabling it to find its place and assume its role. The cells have the same genetic make-up but follow different routes and fulfill distinct activities: they differentiate. To achieve this they activate or suppress the production of specific proteins. What are the signals that determine the function of cells? How does a cell become a building block in the stomach or in the brain?

For almost 50 years biologists thought that everything was written in the genes. And then along came epigenetics1. Ever since it seems to have been agreed that chemical modifications occurring around the DNA molecule can lead to changes on the scale of the organism.

Epigenetic processes even appear to impose the switching on and off of a gene. In a word, epigenetics underpins the programming of cells. These new theories clearly undermined the dogma of "everything is genetic", and now Emmanuel Farge at the Institut Curie has weakened it even further.

There are not only genes…

An embryo has a particular shape at each stage of its development. These successive deformations exert mechanical pressures on the embryo. Yet is this their only consequence? Can they influence, even regulate, the expression of developmental genes?

This is the question posed by Emmanuel Farge2, in his studies of embryonic development of Drosophila, the fruit fly so prized by biologists.

Emmanuel Farge is interested in the Twist gene, which is essential for embryonic development in Drosophila (see box below) and whose human equivalent is involved in the development of certain cancers.

This gene is normally expressed only in cells located ventrally in the embryo. But on applying mechanical pressure to the Drosophila embryo, Emmanuel Farge noted that the Twist gene was then expressed in all the embryo’s cells. Although fleeting, this activation has important consequences since it blocks embryonic development.

It therefore seems that mechanical pressure exerted on the embryo perturbs essential cellular processes. Emmanuel Farge has shown that one of the pathways affected is that of b catenin, a protein whose function is two-fold: it acts both as an anchor ensuring cohesion between cells in tissues and as a transcription factor which can stimulate the expression of certain genes. b catenin could be the link between mechanical pressure and genes.

According to Emmanuel Farge, during normal embryonic development the formation of one of the intermediate layers, the mesoderm, exerts pressure on the anterior region of the embryo and so leads to the expression of the Twist gene. Significantly, the Twist gene is not expressed in mutant embryos in which this mechanical pressure is absent.

This is the first time that a mechanical constraint has been shown to influence the genetic control of the development of Drosophila embryo. Genes are therefore not alone in influencing development. Henceforth it will be necessary to take into account the mechanical sensitivity of living cells.

This discovery in the development of the Drosophila embryo opens up new fields of research and raises numerous questions:

Can other genes be influenced? What of human tissues? Could such pressures, caused, for example, by a tumor mass, perturb the expression of certain genes?

Reference

"Mechanical Induction of Twist in the Drosophila Foregut/Stomodeal Primordium"
Emmanuel Farge
Current biology (www.current-biology.com), vol 13, pp 1365-1377, 19 August 2003
1Institut Universitaire de France, Université Paris VII, Mechanics and Genetics of Developmental Embryogenesis Group, UMR 168 CNRS/Institut Curie.

Notes

1 Epigenetics covers all biological phenomena not strictly determined by the genetic material. Epigenetic variations affect the organism’s phenotype without altering its genotype.
2 Associate Professor at the Paris VII University, biologist and physicist in the research unit UMR 168 CNRS/Institut Curie Physical Chemistry "Curie" headed by Jean-François Joanny.


Press contacts
Institut Curie
Press Relations
Catherine Goupillon
Phone 01 44 32 40 63
service.presse@curie.fr

Céline Giustranti
Phone 01 44 32 40 64
Fax 01 44 32 41 67

Artwork
Cécile Charré
Phone 01 44 32 40 51

Catherine Goupillon | Institut Curie
Further information:
http://www.curie.fr

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>