Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacterial relationships revealed

16.09.2003


Bacteria are an indiscriminate lot. While most organisms tend to pass their genes on to the next generation of their own species, bacteria often exchange genetic material with totally unrelated species – a process called lateral gene transfer.



That is why skeptics doubted that researchers could ever hope to work out the evolutionary history of bacteria. But now, thanks to the availability of sequenced genomes for groups of related bacteria, and a new analytical approach, researchers at the University of Arizona demonstrate that constructing a bacterial family tree is indeed possible.

Nancy Moran, Emmanuelle Lerat, and Vincent Daubin propose an approach that begins by scouring genomes for a set of genes that serve as reliable indicators of bacterial evolution. This method has important implications for biologists studying the evolutionary history of organisms by establishing a foundation for charting the evolutionary events, such as lateral gene transfer, that shape the structure and substance of genomes.


Bacteria promise to reveal a wealth of information about genomic evolution, because so many clusters of related bacterial genomes have been sequenced--allowing for broad comparative analysis among species--and because their genomes are small and compact.

In this study, the researchers chose the ancient bacterial group called gamma Proteobacteria, an ecologically diverse group (including Escherichia coli and Salmonella species) with the most documented cases of lateral gene transfer and the highest number of species with sequenced genomes.

The results support the ability of their method to reconstruct the important evolutionary events affecting genomes. Their approach promises to elucidate not only the evolution of bacterial genomes but also the diversification of bacterial species – events that have occurred over the course of about a billion years of evolution.

CONTACT:
Nancy A. Moran
Departments of Ecology and Evolutionary Biology
University of Arizona
Tucson, AZ 85721, USA
phone: 520-621-3581
alternative phone: 520-615-2244
fax: 520-621-9190
e-mail: nmoran@email.arizona.edu

Lerat E. Daubin V, Moran NA (2003): From Gene Trees to Organismal Phylogeny in Prokaryotes: The Case of the g-Proteobacteria. DOI: 10.1371/journal.pbio.0000019. Download article PDF at:
http://www.plos.org/downloads/moran.pdf.

The article is published online as a sneak preview to PLoS Biology, the first open-access journal from the Public Library of Science (PLoS). The article will be part of the inaugural issue of the new journal, which will appear online and in print in October 2003. PLoS is a non-profit organization of scientists and physicians committed to making the world’s scientific and medical literature a freely available public resource (http://www.plos.org).

Barbara Cohen | EurekAlert!
Further information:
http://www.plos.org
http://www.plos.org/downloads/moran.pdf

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>