Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacterial relationships revealed

16.09.2003


Bacteria are an indiscriminate lot. While most organisms tend to pass their genes on to the next generation of their own species, bacteria often exchange genetic material with totally unrelated species – a process called lateral gene transfer.



That is why skeptics doubted that researchers could ever hope to work out the evolutionary history of bacteria. But now, thanks to the availability of sequenced genomes for groups of related bacteria, and a new analytical approach, researchers at the University of Arizona demonstrate that constructing a bacterial family tree is indeed possible.

Nancy Moran, Emmanuelle Lerat, and Vincent Daubin propose an approach that begins by scouring genomes for a set of genes that serve as reliable indicators of bacterial evolution. This method has important implications for biologists studying the evolutionary history of organisms by establishing a foundation for charting the evolutionary events, such as lateral gene transfer, that shape the structure and substance of genomes.


Bacteria promise to reveal a wealth of information about genomic evolution, because so many clusters of related bacterial genomes have been sequenced--allowing for broad comparative analysis among species--and because their genomes are small and compact.

In this study, the researchers chose the ancient bacterial group called gamma Proteobacteria, an ecologically diverse group (including Escherichia coli and Salmonella species) with the most documented cases of lateral gene transfer and the highest number of species with sequenced genomes.

The results support the ability of their method to reconstruct the important evolutionary events affecting genomes. Their approach promises to elucidate not only the evolution of bacterial genomes but also the diversification of bacterial species – events that have occurred over the course of about a billion years of evolution.

CONTACT:
Nancy A. Moran
Departments of Ecology and Evolutionary Biology
University of Arizona
Tucson, AZ 85721, USA
phone: 520-621-3581
alternative phone: 520-615-2244
fax: 520-621-9190
e-mail: nmoran@email.arizona.edu

Lerat E. Daubin V, Moran NA (2003): From Gene Trees to Organismal Phylogeny in Prokaryotes: The Case of the g-Proteobacteria. DOI: 10.1371/journal.pbio.0000019. Download article PDF at:
http://www.plos.org/downloads/moran.pdf.

The article is published online as a sneak preview to PLoS Biology, the first open-access journal from the Public Library of Science (PLoS). The article will be part of the inaugural issue of the new journal, which will appear online and in print in October 2003. PLoS is a non-profit organization of scientists and physicians committed to making the world’s scientific and medical literature a freely available public resource (http://www.plos.org).

Barbara Cohen | EurekAlert!
Further information:
http://www.plos.org
http://www.plos.org/downloads/moran.pdf

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>