Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensory cells for hearing and balance are fast-developing, UVA researchers find

15.09.2003


The functional development of hair cells in the inner ear that mediate hearing and balance takes place over a period of just one day in mouse embryos, according to a study by a research team at the University of Virginia Health System.



The U.Va. scientists found that three essential elements for development in the mouse inner ear appear between day 16 and day 17 of gestation, roughly equivalent to the late second trimester or early third trimester in the human fetus. The finding is important for ongoing research on regeneration of sensory hair cells in the human inner ear, say researchers, writing in the October edition of Nature Neuroscience, found online at www.nature.com/neuro.

"We were surprised that development of hair cells in the inner ear takes place so rapidly," said researcher Jeffrey R. Holt, an assistant professor of neuroscience and otolaryngology at U.Va. "Suddenly, the hair cells began working. To eventually discover how to regenerate hair cells in the human ear, we have to know when and how the original hair cells develop. That’s why this research is so central to our knowledge."


The next challenge for scientists is to discover the molecular "switches" that turn on inner ear hair cells. "Scientists at U.Va. and elsewhere are working to test stem cells to see if they can develop into hair cells," Holt said. "If we can find the molecular process, we can potentially turn another cell type into an inner ear hair cell." The researchers said they are now assembling a list of processes these important cells go through to develop correctly. "We know the sequence," said study co-author Gwénaëlle Géléoc, an assistant professor of neuroscience and otolaryngology. "Now we can look at different cell types and see if they are on the right track to produce hair cells."

In the lab, Holt and Géléoc found that hair cell transduction in mice, or the response to movement of hair bundles associated with hearing, begins to function over a 24 hours period, starting at embryonic day 16.

Interestingly, all three essential elements develop simultaneously: membrane-bound transduction channels, like trap doors, are formed to carry calcium and potassium which together create an electrical charge sending hearing and balance signals to the brain; microscopic tip-links are formed that operate under tension to open the trap door channel; finally, tiny adaptation motors are formed that regulate sensitivity and allow sounds that range from a faint whisper to a booming cannon to be heard.

The authors of the study said their work may mean a better understanding of congenital hearing and balance deficits in humans.

Bob Beard | EurekAlert!
Further information:
http://hsc.virginia.edu/news

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>