Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensory cells for hearing and balance are fast-developing, UVA researchers find

15.09.2003


The functional development of hair cells in the inner ear that mediate hearing and balance takes place over a period of just one day in mouse embryos, according to a study by a research team at the University of Virginia Health System.



The U.Va. scientists found that three essential elements for development in the mouse inner ear appear between day 16 and day 17 of gestation, roughly equivalent to the late second trimester or early third trimester in the human fetus. The finding is important for ongoing research on regeneration of sensory hair cells in the human inner ear, say researchers, writing in the October edition of Nature Neuroscience, found online at www.nature.com/neuro.

"We were surprised that development of hair cells in the inner ear takes place so rapidly," said researcher Jeffrey R. Holt, an assistant professor of neuroscience and otolaryngology at U.Va. "Suddenly, the hair cells began working. To eventually discover how to regenerate hair cells in the human ear, we have to know when and how the original hair cells develop. That’s why this research is so central to our knowledge."


The next challenge for scientists is to discover the molecular "switches" that turn on inner ear hair cells. "Scientists at U.Va. and elsewhere are working to test stem cells to see if they can develop into hair cells," Holt said. "If we can find the molecular process, we can potentially turn another cell type into an inner ear hair cell." The researchers said they are now assembling a list of processes these important cells go through to develop correctly. "We know the sequence," said study co-author Gwénaëlle Géléoc, an assistant professor of neuroscience and otolaryngology. "Now we can look at different cell types and see if they are on the right track to produce hair cells."

In the lab, Holt and Géléoc found that hair cell transduction in mice, or the response to movement of hair bundles associated with hearing, begins to function over a 24 hours period, starting at embryonic day 16.

Interestingly, all three essential elements develop simultaneously: membrane-bound transduction channels, like trap doors, are formed to carry calcium and potassium which together create an electrical charge sending hearing and balance signals to the brain; microscopic tip-links are formed that operate under tension to open the trap door channel; finally, tiny adaptation motors are formed that regulate sensitivity and allow sounds that range from a faint whisper to a booming cannon to be heard.

The authors of the study said their work may mean a better understanding of congenital hearing and balance deficits in humans.

Bob Beard | EurekAlert!
Further information:
http://hsc.virginia.edu/news

More articles from Life Sciences:

nachricht The body's street sweepers
18.12.2017 | Ludwig-Maximilians-Universität München

nachricht Life on the edge prepares plants for climate change
18.12.2017 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>