Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Powerful new method helps reveal genetic basis of cancer


Plus surprising differences in ’Normal’ DNA

Researchers at Cold Spring Harbor Laboratory have developed one of the most sensitive, comprehensive, and robust methods that now exists for profiling the genetic basis of cancer and other diseases. The method detects chromosomal deletions and amplifications (i.e. missing or excess copies of DNA segments), and is useful for a wide variety of biomedical and other applications.

The study, led by Rob Lucito and Michael Wigler, is published in the October issue of the journal Genome Research (advance on-line publication date: September 15). The powerful new gene discovery method described in the study is called ROMA (Representational Oligonucleotide Microarray Analysis).

By using ROMA to compare the DNA of normal cells and breast cancer cells, the researchers have uncovered a striking collection of chromosomal amplifications and deletions that are likely to be involved in some aspect of breast cancer (see, password available on request). Some of the DNA amplifications and deletions detected in this study correspond to known oncogenes and tumor suppressor genes. However, many of them are likely to reveal new genes and cellular functions involved in breast cancer or cancer in general.

It would be enough that ROMA is capable of providing a comprehensive, genome-wide view of the genetic alterations associated with breast and other cancers. Such information is invaluable for improving the diagnosis and treatment of the disease. But when comparing "normal to normal" instead of "normal to tumor" DNA samples, Lucito and Wigler got a big surprise.

They frequently detected large (100 kb to 1 Mb) chromosomal deletions and duplications in such normal DNA samples. The scientists speculate that such variations or "copy number polymorphisms" among individuals might well underlie many human traits, including heritable predisposition or resistance to disease.

Background Information Relevant to the Development of ROMA

In 1981, using a gene transfer method he pioneered, Wigler, working at Cold Spring Harbor Laboratory, discovered one of the first human oncogenes (the H-ras oncogene). Hyperactive or excess Ras protein, or alterations in cell functions related to Ras, are implicated in the majority of cancers. Today, cancer therapies that target components of the Ras pathway (e.g. farnesyltransferase inhibitors) are in clinical trials.

In 1993, Wigler and Nikolai Lisitsyn developed a powerful and versatile gene discovery method called Representational Difference Analysis (RDA). RDA enables researchers to "clone the differences" between any two sets of DNA (for example, normal versus tumor DNA isolated from the same patient, or uninfected cells versus cells infected with an unknown virus).

Since 1993, Wigler’s lab, alone and in collaboration with groups at Columbia University and Tularik, Inc., has used RDA to identify several previously unrecognized oncogenes and tumor suppressors genes, primarily from sporadic breast cancers (the most common form of the disease). These include PTEN and DBC2 (tumor suppressor genes frequently missing from or inactive in a large proportion of breast and other cancers) in addition to KCNK9 (a gene whose identification revealed a previously unrecognized mechanism for oncogene action as well as an attractive therapeutic target, namely, potassium channels).

The new method, ROMA, is essentially "RDA on a chip." Combining RDA and DNA microarray analysis with the third "pillar" of the method--i.e. knowledge of the complete human genome sequence--gives ROMA unprecedented ability to detect copy number fluctuations on a genome-wide scale.

In addition to Lucito and Wigler, others involved with the study include Larry Norton of Memorial Sloan-Kettering Cancer Center and Scott Powers of Tularik, Inc.

A copy of the study, and illustrations, are available on request.

Contact information for researchers involved with the study:
Robert Lucito (CSHL):; tel = 516-422-4115 or 516-422-4138
Michael Wigler (CSHL): available on request

Peter Sherwood | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>