Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful new method helps reveal genetic basis of cancer

15.09.2003


Plus surprising differences in ’Normal’ DNA

Researchers at Cold Spring Harbor Laboratory have developed one of the most sensitive, comprehensive, and robust methods that now exists for profiling the genetic basis of cancer and other diseases. The method detects chromosomal deletions and amplifications (i.e. missing or excess copies of DNA segments), and is useful for a wide variety of biomedical and other applications.

The study, led by Rob Lucito and Michael Wigler, is published in the October issue of the journal Genome Research (advance on-line publication date: September 15). The powerful new gene discovery method described in the study is called ROMA (Representational Oligonucleotide Microarray Analysis).



By using ROMA to compare the DNA of normal cells and breast cancer cells, the researchers have uncovered a striking collection of chromosomal amplifications and deletions that are likely to be involved in some aspect of breast cancer (see http://roma.cshl.org, password available on request). Some of the DNA amplifications and deletions detected in this study correspond to known oncogenes and tumor suppressor genes. However, many of them are likely to reveal new genes and cellular functions involved in breast cancer or cancer in general.

It would be enough that ROMA is capable of providing a comprehensive, genome-wide view of the genetic alterations associated with breast and other cancers. Such information is invaluable for improving the diagnosis and treatment of the disease. But when comparing "normal to normal" instead of "normal to tumor" DNA samples, Lucito and Wigler got a big surprise.

They frequently detected large (100 kb to 1 Mb) chromosomal deletions and duplications in such normal DNA samples. The scientists speculate that such variations or "copy number polymorphisms" among individuals might well underlie many human traits, including heritable predisposition or resistance to disease.

Background Information Relevant to the Development of ROMA

In 1981, using a gene transfer method he pioneered, Wigler, working at Cold Spring Harbor Laboratory, discovered one of the first human oncogenes (the H-ras oncogene). Hyperactive or excess Ras protein, or alterations in cell functions related to Ras, are implicated in the majority of cancers. Today, cancer therapies that target components of the Ras pathway (e.g. farnesyltransferase inhibitors) are in clinical trials.

In 1993, Wigler and Nikolai Lisitsyn developed a powerful and versatile gene discovery method called Representational Difference Analysis (RDA). RDA enables researchers to "clone the differences" between any two sets of DNA (for example, normal versus tumor DNA isolated from the same patient, or uninfected cells versus cells infected with an unknown virus).

Since 1993, Wigler’s lab, alone and in collaboration with groups at Columbia University and Tularik, Inc., has used RDA to identify several previously unrecognized oncogenes and tumor suppressors genes, primarily from sporadic breast cancers (the most common form of the disease). These include PTEN and DBC2 (tumor suppressor genes frequently missing from or inactive in a large proportion of breast and other cancers) in addition to KCNK9 (a gene whose identification revealed a previously unrecognized mechanism for oncogene action as well as an attractive therapeutic target, namely, potassium channels).

The new method, ROMA, is essentially "RDA on a chip." Combining RDA and DNA microarray analysis with the third "pillar" of the method--i.e. knowledge of the complete human genome sequence--gives ROMA unprecedented ability to detect copy number fluctuations on a genome-wide scale.


In addition to Lucito and Wigler, others involved with the study include Larry Norton of Memorial Sloan-Kettering Cancer Center and Scott Powers of Tularik, Inc.

A copy of the study, and illustrations, are available on request.

Contact information for researchers involved with the study:
Robert Lucito (CSHL): lucito@cshl.edu; tel = 516-422-4115 or 516-422-4138
Michael Wigler (CSHL): available on request

Peter Sherwood | EurekAlert!
Further information:
http://roma.cshl.org
http://www.cshl.org/

More articles from Life Sciences:

nachricht Multifunctional Platform for the Delivery of Gene Therapeutics
22.01.2018 | Angewandte Chemie International Edition

nachricht Charge Order and Electron Localization in a Molecule-Based Solid
22.01.2018 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Multifunctional Platform for the Delivery of Gene Therapeutics

22.01.2018 | Life Sciences

The world's most powerful acoustic tractor beam could pave the way for levitating humans

22.01.2018 | Power and Electrical Engineering

Siberian scientists learned how to reduce harmful emissions from HPPs

22.01.2018 | Power and Electrical Engineering

VideoLinks