Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists ID process to sort carbon nanotubes by electronic properties

12.09.2003


Rice, UIUC researchers find way to separate metallic, non-metallic nanotubes



Researchers at Rice University and the University of Illinois at Urbana-Champaign have discovered the first method to chemically select and separate carbon nanotubes based on their electronic structure. The new process, described in the Sept. 12 issue of Science magazine, represents a fundamental shift in the way scientists think about the chemistry of carbon nanotubes.

"Other than low-cost mass production, there’s no bigger hurdle to overcome in carbon nanotechnology than finding a reliable, affordable means of sorting single-walled carbon nanotubes," said Richard Smalley, University Professor and director of Rice’s Carbon Nanotechnology Laboratory. "If we can develop new technology based on electronic sorting and reliably separate metallic nanotubes from semi-metallic and semi-conducting varieties, we’ll have a terrific tool for nanoscience."


James Tour, Chao Professor of Chemistry, said, "The utility of specific carbon nanotubes, based upon their precise electronic characteristics, could be an enormous advance in molecular electronics. Until now, everyone had to use mixtures of nanotubes, and by process of elimination, select the desired device characteristics afforded from a myriad of choices. This could now all change since there is the possibility of generating homogeneous devices."

All single-walled carbon nanotubes are not created equal. There are 56 varieties, which have subtle differences in diameter or physical structure. Slight as they are, these physical differences lead to marked differences in electrical, optical and chemical properties. For example, about one-third are metals, and the rest are semiconductors.

Although carbon nanotubes have been proposed for myriad applications -- from miniature motors and chemical sensors to molecule-size electronic circuits -- their actual uses have been severely limited, in part because scientists have struggled to separate and sort the knotted assortment of nanotubes that result from all methods of production.

As a post-doctoral researcher in Smalley’s laboratory, Michael Strano, now a professor of chemical and biomolecular engineering at Illinois, developed a technique for breaking up bundles of nanotubes and dispersing them in soapy water. In the present work, Strano and his graduate students, Monica Usrey and Paul Barone, teamed up with Tour and his postdoctoral researcher Christopher Dyke to apply reaction chemistry to the surfaces of nanotubes in order to select metallic tubes over semiconductors.

To control nanotube chemistry, the researchers added water-soluble diazonium salts to nanotubes suspended in an aqueous solution. The diazonium reagent extracts an electric charge and chemically bonds to the nanotubes under certain controlled conditions.

By adding a functional group to the end of the reagent, the researchers can create a "handle" that they can then use to selectively manipulate the nanotubes. There are different techniques for pulling on the handles, including chemical deposition and capillary electrophoresis.

"The electronic properties of nanotubes are determined by their structure, so we have a way of grabbing hold of different nanotubes by utilizing the differences in this electronic structure," Strano said. "Because metals give up an electron faster than semiconductors, the diazonium reagent can be used to separate metallic nanotubes from semiconducting nanotubes."

The chemistry is reversible. After manipulating the nanotubes, the scientists can remove the chemical handles by applying heat. The thermal treatment also restores the pristine electronic structure of the nanotubes.

"Until now, the consensus has been that the chemistry of a nanotube is dependent only on its diameter, with smaller tubes being less stable and more reactive," Strano said. "But that’s clearly not the case here. Our reaction pathways are based on the electronic properties of the nanotube, not strictly on its geometric structure. This represents a new paradigm in the solution phase chemistry of carbon nanotubes."


###
The research was funded by the National Science Foundation, NASA, the Air Force Office of Scientific Research, and the Office of Naval Research.

The paper, titled, "Selectivity of Electronic Structure in the Functionalization of Single Walled Carbon Nanotubes," appears in this week’s issue of Science. Strano and Dyke co-wrote the paper with Smalley, Tour, Usrey, Barone, Rice undergraduate Mathew J. Allen, Research Assistant Hongwei Shan, Research Scientist Carter Kittrell, and Senior Faculty Fellow Robert H. Hauge.

Jade Boyd | EurekAlert!
Further information:
http://chico.rice.edu/

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>