Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists ID process to sort carbon nanotubes by electronic properties

12.09.2003


Rice, UIUC researchers find way to separate metallic, non-metallic nanotubes



Researchers at Rice University and the University of Illinois at Urbana-Champaign have discovered the first method to chemically select and separate carbon nanotubes based on their electronic structure. The new process, described in the Sept. 12 issue of Science magazine, represents a fundamental shift in the way scientists think about the chemistry of carbon nanotubes.

"Other than low-cost mass production, there’s no bigger hurdle to overcome in carbon nanotechnology than finding a reliable, affordable means of sorting single-walled carbon nanotubes," said Richard Smalley, University Professor and director of Rice’s Carbon Nanotechnology Laboratory. "If we can develop new technology based on electronic sorting and reliably separate metallic nanotubes from semi-metallic and semi-conducting varieties, we’ll have a terrific tool for nanoscience."


James Tour, Chao Professor of Chemistry, said, "The utility of specific carbon nanotubes, based upon their precise electronic characteristics, could be an enormous advance in molecular electronics. Until now, everyone had to use mixtures of nanotubes, and by process of elimination, select the desired device characteristics afforded from a myriad of choices. This could now all change since there is the possibility of generating homogeneous devices."

All single-walled carbon nanotubes are not created equal. There are 56 varieties, which have subtle differences in diameter or physical structure. Slight as they are, these physical differences lead to marked differences in electrical, optical and chemical properties. For example, about one-third are metals, and the rest are semiconductors.

Although carbon nanotubes have been proposed for myriad applications -- from miniature motors and chemical sensors to molecule-size electronic circuits -- their actual uses have been severely limited, in part because scientists have struggled to separate and sort the knotted assortment of nanotubes that result from all methods of production.

As a post-doctoral researcher in Smalley’s laboratory, Michael Strano, now a professor of chemical and biomolecular engineering at Illinois, developed a technique for breaking up bundles of nanotubes and dispersing them in soapy water. In the present work, Strano and his graduate students, Monica Usrey and Paul Barone, teamed up with Tour and his postdoctoral researcher Christopher Dyke to apply reaction chemistry to the surfaces of nanotubes in order to select metallic tubes over semiconductors.

To control nanotube chemistry, the researchers added water-soluble diazonium salts to nanotubes suspended in an aqueous solution. The diazonium reagent extracts an electric charge and chemically bonds to the nanotubes under certain controlled conditions.

By adding a functional group to the end of the reagent, the researchers can create a "handle" that they can then use to selectively manipulate the nanotubes. There are different techniques for pulling on the handles, including chemical deposition and capillary electrophoresis.

"The electronic properties of nanotubes are determined by their structure, so we have a way of grabbing hold of different nanotubes by utilizing the differences in this electronic structure," Strano said. "Because metals give up an electron faster than semiconductors, the diazonium reagent can be used to separate metallic nanotubes from semiconducting nanotubes."

The chemistry is reversible. After manipulating the nanotubes, the scientists can remove the chemical handles by applying heat. The thermal treatment also restores the pristine electronic structure of the nanotubes.

"Until now, the consensus has been that the chemistry of a nanotube is dependent only on its diameter, with smaller tubes being less stable and more reactive," Strano said. "But that’s clearly not the case here. Our reaction pathways are based on the electronic properties of the nanotube, not strictly on its geometric structure. This represents a new paradigm in the solution phase chemistry of carbon nanotubes."


###
The research was funded by the National Science Foundation, NASA, the Air Force Office of Scientific Research, and the Office of Naval Research.

The paper, titled, "Selectivity of Electronic Structure in the Functionalization of Single Walled Carbon Nanotubes," appears in this week’s issue of Science. Strano and Dyke co-wrote the paper with Smalley, Tour, Usrey, Barone, Rice undergraduate Mathew J. Allen, Research Assistant Hongwei Shan, Research Scientist Carter Kittrell, and Senior Faculty Fellow Robert H. Hauge.

Jade Boyd | EurekAlert!
Further information:
http://chico.rice.edu/

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>