Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists ID process to sort carbon nanotubes by electronic properties

12.09.2003


Rice, UIUC researchers find way to separate metallic, non-metallic nanotubes



Researchers at Rice University and the University of Illinois at Urbana-Champaign have discovered the first method to chemically select and separate carbon nanotubes based on their electronic structure. The new process, described in the Sept. 12 issue of Science magazine, represents a fundamental shift in the way scientists think about the chemistry of carbon nanotubes.

"Other than low-cost mass production, there’s no bigger hurdle to overcome in carbon nanotechnology than finding a reliable, affordable means of sorting single-walled carbon nanotubes," said Richard Smalley, University Professor and director of Rice’s Carbon Nanotechnology Laboratory. "If we can develop new technology based on electronic sorting and reliably separate metallic nanotubes from semi-metallic and semi-conducting varieties, we’ll have a terrific tool for nanoscience."


James Tour, Chao Professor of Chemistry, said, "The utility of specific carbon nanotubes, based upon their precise electronic characteristics, could be an enormous advance in molecular electronics. Until now, everyone had to use mixtures of nanotubes, and by process of elimination, select the desired device characteristics afforded from a myriad of choices. This could now all change since there is the possibility of generating homogeneous devices."

All single-walled carbon nanotubes are not created equal. There are 56 varieties, which have subtle differences in diameter or physical structure. Slight as they are, these physical differences lead to marked differences in electrical, optical and chemical properties. For example, about one-third are metals, and the rest are semiconductors.

Although carbon nanotubes have been proposed for myriad applications -- from miniature motors and chemical sensors to molecule-size electronic circuits -- their actual uses have been severely limited, in part because scientists have struggled to separate and sort the knotted assortment of nanotubes that result from all methods of production.

As a post-doctoral researcher in Smalley’s laboratory, Michael Strano, now a professor of chemical and biomolecular engineering at Illinois, developed a technique for breaking up bundles of nanotubes and dispersing them in soapy water. In the present work, Strano and his graduate students, Monica Usrey and Paul Barone, teamed up with Tour and his postdoctoral researcher Christopher Dyke to apply reaction chemistry to the surfaces of nanotubes in order to select metallic tubes over semiconductors.

To control nanotube chemistry, the researchers added water-soluble diazonium salts to nanotubes suspended in an aqueous solution. The diazonium reagent extracts an electric charge and chemically bonds to the nanotubes under certain controlled conditions.

By adding a functional group to the end of the reagent, the researchers can create a "handle" that they can then use to selectively manipulate the nanotubes. There are different techniques for pulling on the handles, including chemical deposition and capillary electrophoresis.

"The electronic properties of nanotubes are determined by their structure, so we have a way of grabbing hold of different nanotubes by utilizing the differences in this electronic structure," Strano said. "Because metals give up an electron faster than semiconductors, the diazonium reagent can be used to separate metallic nanotubes from semiconducting nanotubes."

The chemistry is reversible. After manipulating the nanotubes, the scientists can remove the chemical handles by applying heat. The thermal treatment also restores the pristine electronic structure of the nanotubes.

"Until now, the consensus has been that the chemistry of a nanotube is dependent only on its diameter, with smaller tubes being less stable and more reactive," Strano said. "But that’s clearly not the case here. Our reaction pathways are based on the electronic properties of the nanotube, not strictly on its geometric structure. This represents a new paradigm in the solution phase chemistry of carbon nanotubes."


###
The research was funded by the National Science Foundation, NASA, the Air Force Office of Scientific Research, and the Office of Naval Research.

The paper, titled, "Selectivity of Electronic Structure in the Functionalization of Single Walled Carbon Nanotubes," appears in this week’s issue of Science. Strano and Dyke co-wrote the paper with Smalley, Tour, Usrey, Barone, Rice undergraduate Mathew J. Allen, Research Assistant Hongwei Shan, Research Scientist Carter Kittrell, and Senior Faculty Fellow Robert H. Hauge.

Jade Boyd | EurekAlert!
Further information:
http://chico.rice.edu/

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>