Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting transcription: New insights into turning genes on

12.09.2003


The 35,000 or so genes within a human cell are something like players on a sports team: If their activity isn’t controlled and coordinated, the result can be disastrous.



So just as coaches tell individual players when to scramble onto the field and when to stay on the bench, molecules called transcription factors prompt particular genes to be active or stay quiet. Transcription factors occur naturally in cells, but researchers have been working to develop artificial transcription factors (ATFs) that can be tailored to regulate particular genes or sets of genes. These molecules can help scientists probe transcription, the first step in the process through which instructions coded in genes are used to produce proteins. And because errors in transcription are linked to diseases ranging from diabetes to cancer, ATFs eventually might also be used to correct those mistakes.

Using a new approach to developing ATFs, University of Michigan assistant professor of chemistry Anna Mapp and coworkers have gained important insights into the workings of gene-activating transcription factors. They recently discovered that the gene-activating power of a transcription factor likely depends on where the factor binds to the cell’s transcriptional machinery, as well as on how tightly it binds. Previously, researchers had thought that binding affinity (tightness) was the main determinant of a gene activator’s potency. Mapp presented the group’s results at the annual meeting of the American Chemical Society in New York today (Sept. 8).


Natural transcription factors typically have two essential parts or modules: a DNA-binding module that homes in on the specific gene to be regulated and a regulatory module that attaches itself to the cell’s transcriptional machinery through a key protein-to-protein interaction and activates or represses the gene.

"When we started thinking about making artificial transcription factors, we knew we needed to find molecules that had that same binding interaction," Mapp said. Other researchers have created ATFs by shuffling combinations of DNA-binding modules and regulatory modules, typically using regulatory modules that are derived from or resemble natural ones. Mapp’s group took a different approach in hopes of creating smaller ATFs that might be easier to introduce into cells and less likely to be degraded or trigger an immune response---features that would be critical if ATFs are ever to be used in treating disease.

The Michigan team first isolated and purified a protein from the cell’s transcriptional machinery; then they screened large groups of synthetic peptides (short chains of amino acids) for their ability to bind to the protein.

"From that, we got molecules that seem to bind to several different surfaces of the protein," Mapp said, "and we could use that binding interaction to activate transcription in some cases. So we were able to see for the first time that differences in binding site location may actually affect regulator function."

The artificial activators are much smaller than most known natural activators. Using the same kind of screening approach, the researchers now plan to search for small organic molecules that are structurally similar to their protein-binding peptides and to combine those molecules with small DNA-binding modules already developed by other researchers, with the goal of creating new ATFs.

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu/~newsinfo
http://www.umich.edu/~michchem/faculty/mapp
http://www.umich.edu/news/paper0903.html

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>