Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


As autumn approaches, this chickadee’s brain begins to expand


New nerve cells put fall foraging on fast track

The "senior moments" that herald old age, and the ability to forget where we put something we held in our hands just moments ago, give us humans much cause to envy a species like the black-capped chickadee.
Especially when fall is right around the corner.

Every autumn, the chickadee roams a territory covering tens of square miles, gathering seeds and storing them in hundreds of hiding places in trees and on the ground. Over the harsh winter that follows, the tireless songbird, which weighs about 12 grams and fits inside the typical human hand, faithfully re-visits its caches to feed.

The chickadee’s unerring spatial memory is remarkable enough, says Colin Saldanha, assistant professor of biological sciences at Lehigh University and an anatomist who has studied songbirds for six years.

But it is what happens inside the tiny songbird’s brain that Saldanha finds amazing. In the fall, as the chickadee is gathering and storing seeds, Saldanha says, its hippocampus, the part of the brain responsible for spatial organization and memory in many vertebrates, expands in volume by approximately 30 percent by adding new nerve cells. In songbirds, the hippocampus is located on the dorsal surface of the forebrain right beneath the skull. In mammals, the hippocampus is located beneath the cortex.

In the spring, when its feats of memory are needed less, the chickadee’s hippocampus shrinks back to its normal size, Saldanha says.

"To see this happen under natural conditions," says Saldanha, who began studying the black-capped chickadee in 2001, "is truly awe-inspiring.

"Our hypothesis is that this exaggerated growth occurs when the birds need it the most - and we’re interested in finding out what exactly triggers it."

Songbirds are the first species of vertebrate in which brain growth during adulthood has been found to occur, Saldanha says. By studying neurogenesis in the black-capped chickadee, Saldanha hopes to learn how hormones help guide the brain’s development and reorganization. He is particularly interested in the role played by the hormone estrogen in the growth of the hippocampus. Songbirds (like most vertebrates) make estrogen in their ovaries; scientists have determined that their brains also express aromatase, the enzyme that makes estrogen. Perhaps not surprisingly, the area of the songbird brain with the highest estrogen-making capability is the hippocampus.

"We know hormones affect the reorganization of the brain in ovo, in utero and during the early physical development of most vertebrates," Saldanha says. "We are trying to figure out whether the ability to make estrogen in the hippocampus is helping the dramatic reorganization of the [adult] brain."

Saldanha uses transmission electron microscopy (TEM) to examine neurons (nerve cells) and synapses (connections between nerve cells, where scientists think learning occurs) from the brain of the black-capped chickadee. His goal is to determine whether estrogen is being made in the cellular body or in the synapse, and whether the location of this estrogen-making ability changes seasonally.

"We’re looking at the ability of nerve cells and connections to make estrogen in the brain and asking if this ability is involved in brain reorganization," he says.

"We are the first lab, I think, to look at estrogen-synthesizing neurons in the songbird hippocampus at the electron-microscope level. We may, in fact, be the only lab using this technology to investigate songbird spatial memory."

Saldanha is licensed to catch and house birds by the U.S. Department of the Interior Bird Banding Laboratory and the Pennsylvania Game Commission. He has placed feeders in the woods around Lehigh’s Mountaintop Campus, and he keeps captive chickadees in an aviary outside his office in Iacocca Hall.

The behavior of the black-capped chickadee has been studied for a long time, he says, and much is known about its lifecycle and habits. Only recently have scientists begun to study its brain.

"It’s nice to have an ecological umbrella under which to ask biological questions. Because we know the birds’ natural behavior, I feel I can be more confident in the validity of my studies. It can be difficult sometimes to extend findings from the Petri dish to the real world."

Many neuro-degenerative diseases involve the hippocampus, Saldanha says. In humans, strokes can affect the hippocampus and cause a "profound deficit" in memory, especially in the ability to make new memories. In the brains of Alzheimer’s patients, the hippocampus shrinks.

But Saldanha stresses that his studies are new and that any applications lie far in the future.

"Maybe in the very long term, we can understand how to prevent and restore memory loss in patients with Alzheimer’s," he says. "Often times, the best way to fix something that’s broken is to figure how it works when it’s not broken."

Kurt Pfitzer | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

New 4-D printer could reshape the world we live in

21.03.2018 | Life Sciences

Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

21.03.2018 | Trade Fair News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>