Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

As autumn approaches, this chickadee’s brain begins to expand

12.09.2003


New nerve cells put fall foraging on fast track



The "senior moments" that herald old age, and the ability to forget where we put something we held in our hands just moments ago, give us humans much cause to envy a species like the black-capped chickadee.
Especially when fall is right around the corner.

Every autumn, the chickadee roams a territory covering tens of square miles, gathering seeds and storing them in hundreds of hiding places in trees and on the ground. Over the harsh winter that follows, the tireless songbird, which weighs about 12 grams and fits inside the typical human hand, faithfully re-visits its caches to feed.



The chickadee’s unerring spatial memory is remarkable enough, says Colin Saldanha, assistant professor of biological sciences at Lehigh University and an anatomist who has studied songbirds for six years.

But it is what happens inside the tiny songbird’s brain that Saldanha finds amazing. In the fall, as the chickadee is gathering and storing seeds, Saldanha says, its hippocampus, the part of the brain responsible for spatial organization and memory in many vertebrates, expands in volume by approximately 30 percent by adding new nerve cells. In songbirds, the hippocampus is located on the dorsal surface of the forebrain right beneath the skull. In mammals, the hippocampus is located beneath the cortex.

In the spring, when its feats of memory are needed less, the chickadee’s hippocampus shrinks back to its normal size, Saldanha says.

"To see this happen under natural conditions," says Saldanha, who began studying the black-capped chickadee in 2001, "is truly awe-inspiring.

"Our hypothesis is that this exaggerated growth occurs when the birds need it the most - and we’re interested in finding out what exactly triggers it."

Songbirds are the first species of vertebrate in which brain growth during adulthood has been found to occur, Saldanha says. By studying neurogenesis in the black-capped chickadee, Saldanha hopes to learn how hormones help guide the brain’s development and reorganization. He is particularly interested in the role played by the hormone estrogen in the growth of the hippocampus. Songbirds (like most vertebrates) make estrogen in their ovaries; scientists have determined that their brains also express aromatase, the enzyme that makes estrogen. Perhaps not surprisingly, the area of the songbird brain with the highest estrogen-making capability is the hippocampus.

"We know hormones affect the reorganization of the brain in ovo, in utero and during the early physical development of most vertebrates," Saldanha says. "We are trying to figure out whether the ability to make estrogen in the hippocampus is helping the dramatic reorganization of the [adult] brain."

Saldanha uses transmission electron microscopy (TEM) to examine neurons (nerve cells) and synapses (connections between nerve cells, where scientists think learning occurs) from the brain of the black-capped chickadee. His goal is to determine whether estrogen is being made in the cellular body or in the synapse, and whether the location of this estrogen-making ability changes seasonally.

"We’re looking at the ability of nerve cells and connections to make estrogen in the brain and asking if this ability is involved in brain reorganization," he says.

"We are the first lab, I think, to look at estrogen-synthesizing neurons in the songbird hippocampus at the electron-microscope level. We may, in fact, be the only lab using this technology to investigate songbird spatial memory."

Saldanha is licensed to catch and house birds by the U.S. Department of the Interior Bird Banding Laboratory and the Pennsylvania Game Commission. He has placed feeders in the woods around Lehigh’s Mountaintop Campus, and he keeps captive chickadees in an aviary outside his office in Iacocca Hall.

The behavior of the black-capped chickadee has been studied for a long time, he says, and much is known about its lifecycle and habits. Only recently have scientists begun to study its brain.

"It’s nice to have an ecological umbrella under which to ask biological questions. Because we know the birds’ natural behavior, I feel I can be more confident in the validity of my studies. It can be difficult sometimes to extend findings from the Petri dish to the real world."

Many neuro-degenerative diseases involve the hippocampus, Saldanha says. In humans, strokes can affect the hippocampus and cause a "profound deficit" in memory, especially in the ability to make new memories. In the brains of Alzheimer’s patients, the hippocampus shrinks.

But Saldanha stresses that his studies are new and that any applications lie far in the future.

"Maybe in the very long term, we can understand how to prevent and restore memory loss in patients with Alzheimer’s," he says. "Often times, the best way to fix something that’s broken is to figure how it works when it’s not broken."

Kurt Pfitzer | EurekAlert!
Further information:
http://www.lehigh.edu/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>