Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

As autumn approaches, this chickadee’s brain begins to expand

12.09.2003


New nerve cells put fall foraging on fast track



The "senior moments" that herald old age, and the ability to forget where we put something we held in our hands just moments ago, give us humans much cause to envy a species like the black-capped chickadee.
Especially when fall is right around the corner.

Every autumn, the chickadee roams a territory covering tens of square miles, gathering seeds and storing them in hundreds of hiding places in trees and on the ground. Over the harsh winter that follows, the tireless songbird, which weighs about 12 grams and fits inside the typical human hand, faithfully re-visits its caches to feed.



The chickadee’s unerring spatial memory is remarkable enough, says Colin Saldanha, assistant professor of biological sciences at Lehigh University and an anatomist who has studied songbirds for six years.

But it is what happens inside the tiny songbird’s brain that Saldanha finds amazing. In the fall, as the chickadee is gathering and storing seeds, Saldanha says, its hippocampus, the part of the brain responsible for spatial organization and memory in many vertebrates, expands in volume by approximately 30 percent by adding new nerve cells. In songbirds, the hippocampus is located on the dorsal surface of the forebrain right beneath the skull. In mammals, the hippocampus is located beneath the cortex.

In the spring, when its feats of memory are needed less, the chickadee’s hippocampus shrinks back to its normal size, Saldanha says.

"To see this happen under natural conditions," says Saldanha, who began studying the black-capped chickadee in 2001, "is truly awe-inspiring.

"Our hypothesis is that this exaggerated growth occurs when the birds need it the most - and we’re interested in finding out what exactly triggers it."

Songbirds are the first species of vertebrate in which brain growth during adulthood has been found to occur, Saldanha says. By studying neurogenesis in the black-capped chickadee, Saldanha hopes to learn how hormones help guide the brain’s development and reorganization. He is particularly interested in the role played by the hormone estrogen in the growth of the hippocampus. Songbirds (like most vertebrates) make estrogen in their ovaries; scientists have determined that their brains also express aromatase, the enzyme that makes estrogen. Perhaps not surprisingly, the area of the songbird brain with the highest estrogen-making capability is the hippocampus.

"We know hormones affect the reorganization of the brain in ovo, in utero and during the early physical development of most vertebrates," Saldanha says. "We are trying to figure out whether the ability to make estrogen in the hippocampus is helping the dramatic reorganization of the [adult] brain."

Saldanha uses transmission electron microscopy (TEM) to examine neurons (nerve cells) and synapses (connections between nerve cells, where scientists think learning occurs) from the brain of the black-capped chickadee. His goal is to determine whether estrogen is being made in the cellular body or in the synapse, and whether the location of this estrogen-making ability changes seasonally.

"We’re looking at the ability of nerve cells and connections to make estrogen in the brain and asking if this ability is involved in brain reorganization," he says.

"We are the first lab, I think, to look at estrogen-synthesizing neurons in the songbird hippocampus at the electron-microscope level. We may, in fact, be the only lab using this technology to investigate songbird spatial memory."

Saldanha is licensed to catch and house birds by the U.S. Department of the Interior Bird Banding Laboratory and the Pennsylvania Game Commission. He has placed feeders in the woods around Lehigh’s Mountaintop Campus, and he keeps captive chickadees in an aviary outside his office in Iacocca Hall.

The behavior of the black-capped chickadee has been studied for a long time, he says, and much is known about its lifecycle and habits. Only recently have scientists begun to study its brain.

"It’s nice to have an ecological umbrella under which to ask biological questions. Because we know the birds’ natural behavior, I feel I can be more confident in the validity of my studies. It can be difficult sometimes to extend findings from the Petri dish to the real world."

Many neuro-degenerative diseases involve the hippocampus, Saldanha says. In humans, strokes can affect the hippocampus and cause a "profound deficit" in memory, especially in the ability to make new memories. In the brains of Alzheimer’s patients, the hippocampus shrinks.

But Saldanha stresses that his studies are new and that any applications lie far in the future.

"Maybe in the very long term, we can understand how to prevent and restore memory loss in patients with Alzheimer’s," he says. "Often times, the best way to fix something that’s broken is to figure how it works when it’s not broken."

Kurt Pfitzer | EurekAlert!
Further information:
http://www.lehigh.edu/

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>