Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

As autumn approaches, this chickadee’s brain begins to expand

12.09.2003


New nerve cells put fall foraging on fast track



The "senior moments" that herald old age, and the ability to forget where we put something we held in our hands just moments ago, give us humans much cause to envy a species like the black-capped chickadee.
Especially when fall is right around the corner.

Every autumn, the chickadee roams a territory covering tens of square miles, gathering seeds and storing them in hundreds of hiding places in trees and on the ground. Over the harsh winter that follows, the tireless songbird, which weighs about 12 grams and fits inside the typical human hand, faithfully re-visits its caches to feed.



The chickadee’s unerring spatial memory is remarkable enough, says Colin Saldanha, assistant professor of biological sciences at Lehigh University and an anatomist who has studied songbirds for six years.

But it is what happens inside the tiny songbird’s brain that Saldanha finds amazing. In the fall, as the chickadee is gathering and storing seeds, Saldanha says, its hippocampus, the part of the brain responsible for spatial organization and memory in many vertebrates, expands in volume by approximately 30 percent by adding new nerve cells. In songbirds, the hippocampus is located on the dorsal surface of the forebrain right beneath the skull. In mammals, the hippocampus is located beneath the cortex.

In the spring, when its feats of memory are needed less, the chickadee’s hippocampus shrinks back to its normal size, Saldanha says.

"To see this happen under natural conditions," says Saldanha, who began studying the black-capped chickadee in 2001, "is truly awe-inspiring.

"Our hypothesis is that this exaggerated growth occurs when the birds need it the most - and we’re interested in finding out what exactly triggers it."

Songbirds are the first species of vertebrate in which brain growth during adulthood has been found to occur, Saldanha says. By studying neurogenesis in the black-capped chickadee, Saldanha hopes to learn how hormones help guide the brain’s development and reorganization. He is particularly interested in the role played by the hormone estrogen in the growth of the hippocampus. Songbirds (like most vertebrates) make estrogen in their ovaries; scientists have determined that their brains also express aromatase, the enzyme that makes estrogen. Perhaps not surprisingly, the area of the songbird brain with the highest estrogen-making capability is the hippocampus.

"We know hormones affect the reorganization of the brain in ovo, in utero and during the early physical development of most vertebrates," Saldanha says. "We are trying to figure out whether the ability to make estrogen in the hippocampus is helping the dramatic reorganization of the [adult] brain."

Saldanha uses transmission electron microscopy (TEM) to examine neurons (nerve cells) and synapses (connections between nerve cells, where scientists think learning occurs) from the brain of the black-capped chickadee. His goal is to determine whether estrogen is being made in the cellular body or in the synapse, and whether the location of this estrogen-making ability changes seasonally.

"We’re looking at the ability of nerve cells and connections to make estrogen in the brain and asking if this ability is involved in brain reorganization," he says.

"We are the first lab, I think, to look at estrogen-synthesizing neurons in the songbird hippocampus at the electron-microscope level. We may, in fact, be the only lab using this technology to investigate songbird spatial memory."

Saldanha is licensed to catch and house birds by the U.S. Department of the Interior Bird Banding Laboratory and the Pennsylvania Game Commission. He has placed feeders in the woods around Lehigh’s Mountaintop Campus, and he keeps captive chickadees in an aviary outside his office in Iacocca Hall.

The behavior of the black-capped chickadee has been studied for a long time, he says, and much is known about its lifecycle and habits. Only recently have scientists begun to study its brain.

"It’s nice to have an ecological umbrella under which to ask biological questions. Because we know the birds’ natural behavior, I feel I can be more confident in the validity of my studies. It can be difficult sometimes to extend findings from the Petri dish to the real world."

Many neuro-degenerative diseases involve the hippocampus, Saldanha says. In humans, strokes can affect the hippocampus and cause a "profound deficit" in memory, especially in the ability to make new memories. In the brains of Alzheimer’s patients, the hippocampus shrinks.

But Saldanha stresses that his studies are new and that any applications lie far in the future.

"Maybe in the very long term, we can understand how to prevent and restore memory loss in patients with Alzheimer’s," he says. "Often times, the best way to fix something that’s broken is to figure how it works when it’s not broken."

Kurt Pfitzer | EurekAlert!
Further information:
http://www.lehigh.edu/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>