Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit Fly Pheromone Receptor First Ever Discovered Linked to Specific Sexual Behavior

11.09.2003


Hubert Amrein, Ph.D., Assistant professor of genetics and microbiology


For the first time in any animal, Duke University Medical Center researchers have linked a single pheromone receptor in the fruit fly to a specific sexual behavior.

Pheromones are chemical signals exuded by many animals -- including humans -- that serve as stimuli to evoke behavioral responses in other individuals of the same species. Pheromones often attract members of the opposite sex and provide important cues during courtship and mating.

Yet little is known about pheromone receptors, which are the protein switches nestled in cell membranes that trigger responses to pheromones, said Duke Medical Center geneticist Hubert Amrein, Ph.D., senior author of the study.



Now, he and co-author Steven Bray, also of Duke, report that male Drosophila fruit flies lacking one type of taste receptor have difficulty recognizing females. Although the males initiate the courtship ritual, the flies’ mating dance stalls when they apparently fail to detect the proper chemical cue from females. The sexually aberrant flies otherwise behaved normally, the researchers report in the Sept. 11, 2003, issue of Neuron.

"Scientists have been chasing pheromone receptors in animals for a long time with little success," Amrein said, noting that although putative receptors have been found, tying those to specific behaviors had remained a major challenge. "Now, we have identified a receptor and a very specific aspect of courtship for which it is required."

The work was funded by a grant from the National Institutes of Health.

Like mammals, insects display complex mating behaviors, many of which are triggered automatically in response to pheromones or other stimuli, Amrein said. Although the same principles likely underlie the behavior in all animals, he added, flies’ simpler nervous system makes them an ideal model for study.

Courtship in Drosophila includes a regular sequence of behaviors, which are critical for mating, Amrein explained. First, a male identifies a female visually. The male then approaches the female and touches her with his forelegs -- which contain one of the flies’ taste organs -- in a behavior known as tapping. After detecting pheromones from the female, the male produces a courtship song through rapid wing vibrations. The receptive female slows, allowing the male to investigate further with his labellum, the fly equivalent of a tongue. Finally, the male fly begins bending its abdomen as required for copulation, and the two mate.

In their search for pheromone receptor genes, the researchers explored the location of some 25 of 70 known taste receptors on the fly’s body. They found that one such candidate pheromone receptor, encoded by a gene called Gr68a, showed up only on the forelegs that males use in the tapping stage of courtship. Also, found the researchers, the activity of the Gr68a gene was governed by a gene that controls many aspects of sexual differentiation in flies.

The researchers found that male flies lacking the neurons that express the Gr68a receptor spent less time courting females and, as a result, mated significantly less often than normal flies did. Those deficient flies that did mate successfully took twice as long to do so in comparison to intact males.

Also, found the researchers, males lacking the Gr68a-expressing neurons initiated courtship more often than normal but the ritual stalled after the tapping stage, when males apparently failed to receive the pheromone cue from females. Flies lacking only Gr68a showed the same dysfunction as those lacking the neurons completely, a result which links the behavior directly to the taste receptor, Amrein said.

"It’s quite remarkable that a single gene receptor, expressed in just a few cells of the entire male fly, plays such a crucial role in the courtship process," Amrein said. "When you knock out the function of the gene, the flies show a serious mating deficit."

Although an earlier study found that mice lacking 16 genes thought to include pheromone receptors exhibited abnormal sexual and aggressive behavior, this is the first study to clearly link a single pheromone receptor to a specific mating behavior, Amrein said.

Besides chemical sensing, courtship in flies involves visual and auditory cues. Therefore, Amrein said, the finding in fruit flies is a step toward understanding how the brain integrates different kinds of sensory input and translates those signals into complex behaviors critical to reproduction and survival.

Kendall Morgan | Duke Med News
Further information:
http://dukemednews.org/news/article.php?id=7022

More articles from Life Sciences:

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

nachricht A blue stoplight to prevent runaway photosynthesis
27.09.2016 | National Institute for Basic Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>