Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Young sea animals clone themselves – century-old debate halted

11.09.2003


After more than a century of intensive study, scientists have assumed that larvae of non-parasitic invertebrates reproduce only very rarely, but new research by University of Alberta scientists overthrows this conventional wisdom. Graduate student Alexandra Eaves and Dr. Richard Palmer, from the U of A’s Faculty of Science, have found that asexual cloning by some marine invertebrate larvae is not as rare and enigmatic a phenomenon as previously assumed.



"A wealth of knowledge of how embryos grow has come from studying sea urchin development," said Eaves. "The discovery that these young animals can clone themselves provides an exceedingly rare opportunity to examine how a growing animal can repeat its own early development using a part of its body."

Scattered earlier reports have observed that invertebrate larvae can spontaneously clone but Eaves and Palmer discovered this trait in three new echinoderm groups--sea cucumbers, sand dollars, and sea urchins--offering surprising new insight about chordate evolution. Larval cloning represents an intriguing new dimension to invertebrate life histories including the suggestion that clones may subsequently clone. The research is published in the current edition of the prestigious journal Nature.


The larvae of echinoderms (the group that includes starfish, sea urchins, sea cucumbers, etc.) usually swim and feed for several months before transforming into a miniature adult. During this time some larvae form an outgrowth -- essentially a ball of tissue -- that pinches-off of the larval body and grows into a second, normal-looking larva--a clone.

One of the most remarkable parts about the research is that for more than 100 years, scientists may have observed larval asexual reproduction, but did not recognize what they saw, said Palmer. Even more remarkably, at least one early report of larval cloning was dismissed as an artifact of laboratory culture conditions.

"These data make it clear that people have likely seen this spontaneous cloning for many years but not recognized it," said Palmer. "This is a dramatic example of what terrifies scientists the most--when you see things with your own eyes but refuse to acknowledge it. It’s a classic example of how deeply held beliefs may actually prevent you from seeing things."



Alexandra Eaves’ research is supported by an Alberta Ingenuity Fund studentship while Dr. Richard Palmer has an Natural Sciences and Engineering Research Council (NSERC) operating grant.

Phoebe Dey | EurekAlert!
Further information:
http://www.ualberta.ca/

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>