Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Young sea animals clone themselves – century-old debate halted

11.09.2003


After more than a century of intensive study, scientists have assumed that larvae of non-parasitic invertebrates reproduce only very rarely, but new research by University of Alberta scientists overthrows this conventional wisdom. Graduate student Alexandra Eaves and Dr. Richard Palmer, from the U of A’s Faculty of Science, have found that asexual cloning by some marine invertebrate larvae is not as rare and enigmatic a phenomenon as previously assumed.



"A wealth of knowledge of how embryos grow has come from studying sea urchin development," said Eaves. "The discovery that these young animals can clone themselves provides an exceedingly rare opportunity to examine how a growing animal can repeat its own early development using a part of its body."

Scattered earlier reports have observed that invertebrate larvae can spontaneously clone but Eaves and Palmer discovered this trait in three new echinoderm groups--sea cucumbers, sand dollars, and sea urchins--offering surprising new insight about chordate evolution. Larval cloning represents an intriguing new dimension to invertebrate life histories including the suggestion that clones may subsequently clone. The research is published in the current edition of the prestigious journal Nature.


The larvae of echinoderms (the group that includes starfish, sea urchins, sea cucumbers, etc.) usually swim and feed for several months before transforming into a miniature adult. During this time some larvae form an outgrowth -- essentially a ball of tissue -- that pinches-off of the larval body and grows into a second, normal-looking larva--a clone.

One of the most remarkable parts about the research is that for more than 100 years, scientists may have observed larval asexual reproduction, but did not recognize what they saw, said Palmer. Even more remarkably, at least one early report of larval cloning was dismissed as an artifact of laboratory culture conditions.

"These data make it clear that people have likely seen this spontaneous cloning for many years but not recognized it," said Palmer. "This is a dramatic example of what terrifies scientists the most--when you see things with your own eyes but refuse to acknowledge it. It’s a classic example of how deeply held beliefs may actually prevent you from seeing things."



Alexandra Eaves’ research is supported by an Alberta Ingenuity Fund studentship while Dr. Richard Palmer has an Natural Sciences and Engineering Research Council (NSERC) operating grant.

Phoebe Dey | EurekAlert!
Further information:
http://www.ualberta.ca/

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>