Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson and Brigham and Women’s Researchers Find Blue Light Important for Setting Biological Clock

11.09.2003


Researchers from Brigham and Women’s Hospital (BWH) in Boston and Jefferson Medical College have found that the body’s natural biological clock is more sensitive to shorter wavelength blue light than it is to the longer wavelength green light, which is needed to see.



The discovery proves what scientists have suspected over the last decade: a second, non-visual photoreceptor system drives the body’s internal clock, which sets sleep patterns and other physiological and behavioral functions.

“This discovery will have an immediate impact on the therapeutic use of light for treating winter depression and circadian disorders,” says George Brainard, Ph.D., professor of neurology at Jefferson Medical College of Thomas Jefferson University in Philadelphia. “Some makers of light therapy equipment are developing prototypes with enhanced blue light stimuli.”


“In the long range, we think this will shape all artificial lighting, whether it’s used for therapeutic purposes, or for normal illumination of workplaces, hospitals or homes – this is where the impact will be,” he says. “Broad changes in general architectural lighting may take years, but the groundwork has been laid.”

In theory, he says, “If a clinician wants to use light therapeutically, the blue wavelengths may be more effective. If you wanted built-in illumination that would enhance circadian regulation, you might want this wavelength region emphasized. It is interesting that natural daylight – the blue sky – is rich in this part of the spectrum.”

Dr. Brainard and his co-workers previously discovered that wavelengths of light in the blue region of the visible spectrum are the most effective in controlling the production of melatonin, which plays an important role in the body’s circadian rhythms.

The scientists reported their findings September 9 in the Journal of Clinical Endocrinology and Metabolism.

In the study, researchers tested 16 healthy subjects, exposing them to the same amount of blue or green light. They measured the effect of the light exposure on the timing of their biological rhythms. The researchers found that blue light was twice as effective as the same amount of green light at resetting the internal biological clock. Dr. Brainard, who is also associate team leader for the Human Performance Factors, Sleep and Chronobiology Team of the National Space Biomedical Research Institute, sees the work as having potential impact on sleep disorders involving space travel. Sleep disorders are extremely common, affecting as many as 40 million Americans.

Steve Benowitz | TJUH
Further information:
http://www.jeffersonhospital.org/news/e3front.dll?durki=17015

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>