Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson and Brigham and Women’s Researchers Find Blue Light Important for Setting Biological Clock

11.09.2003


Researchers from Brigham and Women’s Hospital (BWH) in Boston and Jefferson Medical College have found that the body’s natural biological clock is more sensitive to shorter wavelength blue light than it is to the longer wavelength green light, which is needed to see.



The discovery proves what scientists have suspected over the last decade: a second, non-visual photoreceptor system drives the body’s internal clock, which sets sleep patterns and other physiological and behavioral functions.

“This discovery will have an immediate impact on the therapeutic use of light for treating winter depression and circadian disorders,” says George Brainard, Ph.D., professor of neurology at Jefferson Medical College of Thomas Jefferson University in Philadelphia. “Some makers of light therapy equipment are developing prototypes with enhanced blue light stimuli.”


“In the long range, we think this will shape all artificial lighting, whether it’s used for therapeutic purposes, or for normal illumination of workplaces, hospitals or homes – this is where the impact will be,” he says. “Broad changes in general architectural lighting may take years, but the groundwork has been laid.”

In theory, he says, “If a clinician wants to use light therapeutically, the blue wavelengths may be more effective. If you wanted built-in illumination that would enhance circadian regulation, you might want this wavelength region emphasized. It is interesting that natural daylight – the blue sky – is rich in this part of the spectrum.”

Dr. Brainard and his co-workers previously discovered that wavelengths of light in the blue region of the visible spectrum are the most effective in controlling the production of melatonin, which plays an important role in the body’s circadian rhythms.

The scientists reported their findings September 9 in the Journal of Clinical Endocrinology and Metabolism.

In the study, researchers tested 16 healthy subjects, exposing them to the same amount of blue or green light. They measured the effect of the light exposure on the timing of their biological rhythms. The researchers found that blue light was twice as effective as the same amount of green light at resetting the internal biological clock. Dr. Brainard, who is also associate team leader for the Human Performance Factors, Sleep and Chronobiology Team of the National Space Biomedical Research Institute, sees the work as having potential impact on sleep disorders involving space travel. Sleep disorders are extremely common, affecting as many as 40 million Americans.

Steve Benowitz | TJUH
Further information:
http://www.jeffersonhospital.org/news/e3front.dll?durki=17015

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>