Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designing a better catalyst for ’artificial photosynthesis’

10.09.2003


Scientists studying the conversion of carbon dioxide (CO2) to carbon monoxide (CO) -- a crucial step in transforming CO2 to useful organic compounds such as methanol -- are trying to mimic what plants do when they convert CO2 and water to carbohydrates and oxygen in the presence of chlorophyll and sunlight. Such "artificial photosynthesis" could produce inexpensive fuels and raw materials for the chemical industry from renewable solar energy. But achieving this goal is no simple task.



"Nature has found a way to do this over eons," says Etsuko Fujita, a chemist at the Department of Energy’s Brookhaven National Laboratory. "It’s very complicated chemistry."

Nature uses chlorophyll as a light absorber and electron-transfer agent. However, chlorophyll does not directly react with CO2. If you take it out of the plant and place it in an artificial system, it decomposes rather quickly, resulting in only a small amount of CO production.


So Fujita and others trying to mimic photosynthesis have turned to artificial catalysts made from robust transition metal complexes such as rhenium complexes. These catalysts absorb solar energy and transfer electrons to CO2, releasing CO. But until now, no one had explained how these processes work in detail. By studying these reactions over very short and long timescales (ranging from 10-8 seconds to hours), Fujita and her colleagues at Brookhaven have discovered an important intermediate step. A most intriguing result is the involvement of two energetic metal complexes to activate one CO2 molecule. Without CO2, the complexes dimerize much more slowly than expected.

The Brookhaven scientists’ work, incorporating a combined experimental and theoretical approach, may help to explain why the reaction proceeds so slowly, which may ultimately contribute to the design of more efficient catalysts.

Fujita will present a talk on this work, which will be published in the Oct. 1 Journal of the American Chemical Society, during the "Organometallic Catalysis" session on Tuesday, September 9, 2003, at 2:30 p.m. in the Jacob Javits Convention Center, room 1A29. This work was funded by the Division of Chemical Sciences, Office of Basic Energy Sciences at DOE’s Office of Science.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov/

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>