Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In place fabrication solves organic polymer shortcoming

09.09.2003


Just like the manufacturers of silicon electronics, a team of Penn State chemical engineers wants to assemble circuit boards in place, but these circuits are made of conducting organic polymers that pose major fabrication roadblocks.



"We want to build electronic devices like transistors and flexible circuits," says Dr. Seong Kim, assistant professor of chemical engineering.

Kim and Sudarshan Natarajan, graduate student in chemical engineering, looked at fabricating circuits from polythiophene. This conjugate conducting organic polymer is easily made in a beaker, but once the polymer is created from chaining together a series of identical smaller molecules – monomers – it is a powder that cannot be molded or used for film coating.


"Conjugate conducting polymers are not soluble nor are they meltable," Kim told attendees at the annual meeting of the American Chemical Society today (Sept. 8) in New York. "Some researchers have made them soluble by adding elements to the polymer backbone, but making circuit boards with these is difficult and requires high energy."

Kim and Natarajan solve the fabrication problem by combining the synthesis and processing steps, which are done separately in conventional methods, into a single step.

"We bypass the problem," says Kim. "We make the material at the site of application."

The researchers use a prepared substrate and deposit the monomer – the small molecule that chains to make the polymer – using standard physical vapor deposition. Once they have a thin film of the monomer on the substrate, they apply a mask, similar to those used in standard silicon electronics manufacture, to the surface. The masked monomer film is then exposed to ultraviolet light.

The light causes two monomers to join forming a dimer, then a third molecule to form a trimer and so on. Dimers and trimers then join to begin forming the much longer polymer chains until all the monomer exposed to light is polymerized.

This reaction differs from normal polymerization where the chain begins at one point and grows by adding individual monomers. In this new process, monomers are joining each other wherever they are struck by the photons in the ultraviolet light. The process takes about seven minutes to complete. The researchers then wash off the soluble, uncoupled monomers, leaving only the pattern of conducting polymers indicated by the mask.

Aiming to incorporate conjugate conducting organic materials into the current silicon-based microtechnology, the researchers tried a variety of inorganic substrates including copper, gold and silicon.

However, neither copper nor silicon will make a flexible circuit, so the researchers are also investigating using other flexible substrates such as plastics. A circuit made on plastic materials would find applications where the flexibility is critical. For example, flexible circuits would be ideal for lightweight flexible-screen displays creating electronic paper.

A variety of conducting polymers are also light emitting. The proper combination of red, yellow and green can produce full color images. Another example would be in biomedical applications.

The researchers are looking at a variety of other organic conducting polymers for use in in-place fabrication of circuits and electronic devices.

A seed grant from Penn State’s National Science Foundation-supported Materials Research Science and Engineering Center seed grant supported this work.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>