Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In place fabrication solves organic polymer shortcoming

09.09.2003


Just like the manufacturers of silicon electronics, a team of Penn State chemical engineers wants to assemble circuit boards in place, but these circuits are made of conducting organic polymers that pose major fabrication roadblocks.



"We want to build electronic devices like transistors and flexible circuits," says Dr. Seong Kim, assistant professor of chemical engineering.

Kim and Sudarshan Natarajan, graduate student in chemical engineering, looked at fabricating circuits from polythiophene. This conjugate conducting organic polymer is easily made in a beaker, but once the polymer is created from chaining together a series of identical smaller molecules – monomers – it is a powder that cannot be molded or used for film coating.


"Conjugate conducting polymers are not soluble nor are they meltable," Kim told attendees at the annual meeting of the American Chemical Society today (Sept. 8) in New York. "Some researchers have made them soluble by adding elements to the polymer backbone, but making circuit boards with these is difficult and requires high energy."

Kim and Natarajan solve the fabrication problem by combining the synthesis and processing steps, which are done separately in conventional methods, into a single step.

"We bypass the problem," says Kim. "We make the material at the site of application."

The researchers use a prepared substrate and deposit the monomer – the small molecule that chains to make the polymer – using standard physical vapor deposition. Once they have a thin film of the monomer on the substrate, they apply a mask, similar to those used in standard silicon electronics manufacture, to the surface. The masked monomer film is then exposed to ultraviolet light.

The light causes two monomers to join forming a dimer, then a third molecule to form a trimer and so on. Dimers and trimers then join to begin forming the much longer polymer chains until all the monomer exposed to light is polymerized.

This reaction differs from normal polymerization where the chain begins at one point and grows by adding individual monomers. In this new process, monomers are joining each other wherever they are struck by the photons in the ultraviolet light. The process takes about seven minutes to complete. The researchers then wash off the soluble, uncoupled monomers, leaving only the pattern of conducting polymers indicated by the mask.

Aiming to incorporate conjugate conducting organic materials into the current silicon-based microtechnology, the researchers tried a variety of inorganic substrates including copper, gold and silicon.

However, neither copper nor silicon will make a flexible circuit, so the researchers are also investigating using other flexible substrates such as plastics. A circuit made on plastic materials would find applications where the flexibility is critical. For example, flexible circuits would be ideal for lightweight flexible-screen displays creating electronic paper.

A variety of conducting polymers are also light emitting. The proper combination of red, yellow and green can produce full color images. Another example would be in biomedical applications.

The researchers are looking at a variety of other organic conducting polymers for use in in-place fabrication of circuits and electronic devices.

A seed grant from Penn State’s National Science Foundation-supported Materials Research Science and Engineering Center seed grant supported this work.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Life Sciences:

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

nachricht UK chemistry researchers develop catalyst that mimics the z-scheme of photosynthesis
26.06.2017 | University of Kentucky

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>