Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NC State Geneticists Show Ripple Effects of Gene Mutations

09.09.2003


When a plane arrives late to an airport, it affects more than just the frustrated passengers on the tardy plane – the ripple effects could throw the entire day’s timetable off schedule.



Similarly, in a new study, North Carolina State University geneticists have found that changes to genes regulating olfactory behavior in the fruit fly Drosophila melanogaster, a popular insect model for genetics, have far greater implications than previously appreciated.

The study is presented in a paper published in the Sept. 7 online edition of Nature Genetics.


Dr. Robert Anholt, professor of zoology and genetics, director of NC State’s Keck Center for Behavioral Biology and the paper’s lead author, said that in the study of how genes affect behavior, the days of thinking about genes in a linear fashion are over.

“In the past, scientists would make a mutation – or a change in the genetic information – in a gene, observe the effect on behavior and say that the particular gene is essential for a particular behavior,” he said. “But when you perturb a gene, you do not just perturb a gene. You create, instead, an effect like the ripples produced when you throw a pebble into a pond. We need to think in terms of networks that generate behavior.”

The study breaks new ground because it enabled the scientists to quantify the extent of the ripples in the genome that affect behavior, Anholt said.

In previous studies, the scientists introduced little pieces of DNA, or transposons, randomly into the genome. “If the transposons insert in a regulatory region of a gene, or inside a gene, they disrupt the function of the gene,” Anholt said.

Anholt’s lab studied olfactory behavior because it can be readily measured and is essential for survival. The investigators isolated a series of smell-impaired flies that were genetically identical but with one particular disrupted gene, and showed enhanced effects when these genes interacted.

“We were able to place them into a network of genetic interactions which provided us with a little view of how genes might work together to determine behavior. Imagine that you are putting together pieces of a puzzle and there comes a moment when you get an inkling of what the final picture might look like,” Anholt said.

In the study published in Nature Genetics, the scientists took five genes involved in olfactory behavior in Drosophila melanogaster, extracted the RNA from these five lines and compared their transcriptomes, or all the RNA, of males and females separately. It was important for this study to use a model organism that can be highly inbred so that all individuals are genetically identical. Equally important was the use of sophisticated statistical analyses applied by study co-author Dr. Trudy Mackay, William Neal Reynolds professor of genetics at NC State.

“If we make a perturbation in one gene by introducing a transposon, what happens to the rest of the transcriptome? That’s the question we asked,” Anholt said. “It turns out that the genomic perturbations arising from a single insertion are substantial. With this experiment, we could see how many genes were perturbed when we mutated one gene, but we could also look at the overlap of the ripples.”

In addition, the researchers were able to identify the numbers of male- or female-specific genes that were affected.

Finally, in what Anholt called the “tour de force” of the study, the researchers attempted to find whether genes in the ripples actually affect olfactory behavior.

To address the issue, the researchers went to the Drosophila stock center and its collection of mutants and used a genetic method, pioneered by Mackay, called quantitative complementation tests.

“Two-thirds of the genes within ripples resulting from the smell-impaired mutations themselves affected olfactory behavior. This means that the interactions that we see in the transcriptome mirror the genetic interactions that we see at the behavioral level. It also shows that this approach is a very good strategy for large-scale gene discovery for behavior.”

Anholt says this approach can be applied to any complex trait in any animal with a controlled genetic background.

“In the end, we’re trying to find how subtle variations in genes affect behavior, and how genetic networks change in response to the environment and during development and evolution,” he said.

The study was done in collaboration with Syngenta’s Torrey Mesa Research Institute, and the W.M. Keck Foundation and the National Institutes of Health supported the research.

Mick Kulikowski | NC State University
Further information:
http://www.ncsu.edu/news/press_releases/03_09/244.htm

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>