Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NC State Geneticists Show Ripple Effects of Gene Mutations

09.09.2003


When a plane arrives late to an airport, it affects more than just the frustrated passengers on the tardy plane – the ripple effects could throw the entire day’s timetable off schedule.



Similarly, in a new study, North Carolina State University geneticists have found that changes to genes regulating olfactory behavior in the fruit fly Drosophila melanogaster, a popular insect model for genetics, have far greater implications than previously appreciated.

The study is presented in a paper published in the Sept. 7 online edition of Nature Genetics.


Dr. Robert Anholt, professor of zoology and genetics, director of NC State’s Keck Center for Behavioral Biology and the paper’s lead author, said that in the study of how genes affect behavior, the days of thinking about genes in a linear fashion are over.

“In the past, scientists would make a mutation – or a change in the genetic information – in a gene, observe the effect on behavior and say that the particular gene is essential for a particular behavior,” he said. “But when you perturb a gene, you do not just perturb a gene. You create, instead, an effect like the ripples produced when you throw a pebble into a pond. We need to think in terms of networks that generate behavior.”

The study breaks new ground because it enabled the scientists to quantify the extent of the ripples in the genome that affect behavior, Anholt said.

In previous studies, the scientists introduced little pieces of DNA, or transposons, randomly into the genome. “If the transposons insert in a regulatory region of a gene, or inside a gene, they disrupt the function of the gene,” Anholt said.

Anholt’s lab studied olfactory behavior because it can be readily measured and is essential for survival. The investigators isolated a series of smell-impaired flies that were genetically identical but with one particular disrupted gene, and showed enhanced effects when these genes interacted.

“We were able to place them into a network of genetic interactions which provided us with a little view of how genes might work together to determine behavior. Imagine that you are putting together pieces of a puzzle and there comes a moment when you get an inkling of what the final picture might look like,” Anholt said.

In the study published in Nature Genetics, the scientists took five genes involved in olfactory behavior in Drosophila melanogaster, extracted the RNA from these five lines and compared their transcriptomes, or all the RNA, of males and females separately. It was important for this study to use a model organism that can be highly inbred so that all individuals are genetically identical. Equally important was the use of sophisticated statistical analyses applied by study co-author Dr. Trudy Mackay, William Neal Reynolds professor of genetics at NC State.

“If we make a perturbation in one gene by introducing a transposon, what happens to the rest of the transcriptome? That’s the question we asked,” Anholt said. “It turns out that the genomic perturbations arising from a single insertion are substantial. With this experiment, we could see how many genes were perturbed when we mutated one gene, but we could also look at the overlap of the ripples.”

In addition, the researchers were able to identify the numbers of male- or female-specific genes that were affected.

Finally, in what Anholt called the “tour de force” of the study, the researchers attempted to find whether genes in the ripples actually affect olfactory behavior.

To address the issue, the researchers went to the Drosophila stock center and its collection of mutants and used a genetic method, pioneered by Mackay, called quantitative complementation tests.

“Two-thirds of the genes within ripples resulting from the smell-impaired mutations themselves affected olfactory behavior. This means that the interactions that we see in the transcriptome mirror the genetic interactions that we see at the behavioral level. It also shows that this approach is a very good strategy for large-scale gene discovery for behavior.”

Anholt says this approach can be applied to any complex trait in any animal with a controlled genetic background.

“In the end, we’re trying to find how subtle variations in genes affect behavior, and how genetic networks change in response to the environment and during development and evolution,” he said.

The study was done in collaboration with Syngenta’s Torrey Mesa Research Institute, and the W.M. Keck Foundation and the National Institutes of Health supported the research.

Mick Kulikowski | NC State University
Further information:
http://www.ncsu.edu/news/press_releases/03_09/244.htm

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>