Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Battle of the DNA bulge may help thwart cancer

08.09.2003


UH Research Aims to Understand How Mistakes In DNA Replication Lead To Disease



Studies at the University of Houston are shedding light on the mechanisms our bodies use to recognize and repair mistakes in our genetic code, mistakes that, left unchecked, could lead to cancer.

DNA is the body’s blueprint found in every cell, and it carries all our genetic information. Every time a living cell divides to make new cells, it must first make a copy of its DNA, or transcribe it, similar to the way monks used to transcribe old scrolls. If a DNA transcription error is made, the body’s “spellcheckers” may find it and fix it. But if they fail to detect and repair the mistake, the cell’s instructions are altered.


“When a mistake gets through, you have a problem that could lead to a dangerous mutation,” says B. Montgomery Pettitt, the Hugh Roy and Lille Cranz Cullen Distinguished Professor of Chemistry at UH. “If that mistake has turned a good instruction into a bad instruction that says ‘please make nonsense,’ then that could lead to cancer.”

Pettitt and his research group are studying a particular type of DNA transcription error called a bulge, as well as the protein “spellcheckers” responsible for finding and repairing bulges.

“Some of the worst places to get these errors are in the genes that determine cell growth and death,” Pettitt says. “One of the characteristics of cancer cells is that they are essentially immortal, and they’re like Peter Pan – they never grow up. So this inhibiting of normal cell death is one of the real problems.”

Ultimately, the UH studies may lead to more targeted cancer treatments, says Pettitt, who also is director of the Institute for Molecular Design at UH.

Pettitt will present his research on DNA bulges and recognition proteins Sept. 7 at the 226th annual American Chemical Society national meeting in New York, N.Y.

Pettit’s work describing DNA bulges comes fifty years after scientists first described what the normal structure of DNA looks like – a ladder twisted into a helix, or coil. The sides of that ladder are made of sugar and phosphate groups, and the “rungs” are chemical building blocks called bases. There are four different bases, abbreviated A, G, T and C. A pair of bases, joined together, makes up each rung.

As DNA is being copied, a protein untwists and unzips the double helix that joins the base pairs. Another protein then comes along and begins synthesizing the appropriate bases to latch on to each side of the now separated strands, resulting in two new DNA strands.

Pettitt and his group are particularly interested in the protein that proofs and checks the DNA strands for errors during this process.

“Understanding what these proteins look for as they ‘proofread’ the DNA, where they look, and how they recognize a DNA bulge will help us better understand what goes wrong when the protein can’t recognize the errors,” Pettitt says.

A DNA bulge occurs where an extra base winds up on one side of the DNA strand.

“A bulge is like having a ladder with one extra rung that only goes halfway across,” Pettitt explains.

The bulge can be either a missing base, or an extra one that has been inserted during the DNA copying process. Most bulges happen during replication.

In the research to be presented at the ACS meeting, Pettitt’s team looked at all the various ways a bulge can orient itself along the DNA strand. The researchers built sophisticated computer models of the bulges, based on experimental data. Their computer simulations help them determine how probable each of the various bulge orientation models is.

“No one has looked at these things in the way we have. What we found was that the bulge could sit there on the inside of the helix with nobody across from it, or it could flip outward and point into the solution,” Pettitt says. These were the most likely orientations, but an errant base also could try to bully its way in to the strand and make weird distortions in the whole DNA ladder.

“There’s a range of things that it can wind up doing,” Pettitt says. “We want to focus on the orientations that happen a lot, those that are very probable.”

As for how prevalent bulges are in general, Pettitt says, “this is something we’re definitely working on.”

The UH research is funded by the National Cancer Institute, which is part of the National Institutes of Health.

SOURCE: Pettitt, 713-743-3263; pettitt@uh.edu

Eric Gerber | University of Houston
Further information:
http://www.uh.edu/admin/media/nr/2003/09sept/090703dnabulge.html
http://www.uh.edu/admin/media/sciencelist.html.

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>