Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Battle of the DNA bulge may help thwart cancer

08.09.2003


UH Research Aims to Understand How Mistakes In DNA Replication Lead To Disease



Studies at the University of Houston are shedding light on the mechanisms our bodies use to recognize and repair mistakes in our genetic code, mistakes that, left unchecked, could lead to cancer.

DNA is the body’s blueprint found in every cell, and it carries all our genetic information. Every time a living cell divides to make new cells, it must first make a copy of its DNA, or transcribe it, similar to the way monks used to transcribe old scrolls. If a DNA transcription error is made, the body’s “spellcheckers” may find it and fix it. But if they fail to detect and repair the mistake, the cell’s instructions are altered.


“When a mistake gets through, you have a problem that could lead to a dangerous mutation,” says B. Montgomery Pettitt, the Hugh Roy and Lille Cranz Cullen Distinguished Professor of Chemistry at UH. “If that mistake has turned a good instruction into a bad instruction that says ‘please make nonsense,’ then that could lead to cancer.”

Pettitt and his research group are studying a particular type of DNA transcription error called a bulge, as well as the protein “spellcheckers” responsible for finding and repairing bulges.

“Some of the worst places to get these errors are in the genes that determine cell growth and death,” Pettitt says. “One of the characteristics of cancer cells is that they are essentially immortal, and they’re like Peter Pan – they never grow up. So this inhibiting of normal cell death is one of the real problems.”

Ultimately, the UH studies may lead to more targeted cancer treatments, says Pettitt, who also is director of the Institute for Molecular Design at UH.

Pettitt will present his research on DNA bulges and recognition proteins Sept. 7 at the 226th annual American Chemical Society national meeting in New York, N.Y.

Pettit’s work describing DNA bulges comes fifty years after scientists first described what the normal structure of DNA looks like – a ladder twisted into a helix, or coil. The sides of that ladder are made of sugar and phosphate groups, and the “rungs” are chemical building blocks called bases. There are four different bases, abbreviated A, G, T and C. A pair of bases, joined together, makes up each rung.

As DNA is being copied, a protein untwists and unzips the double helix that joins the base pairs. Another protein then comes along and begins synthesizing the appropriate bases to latch on to each side of the now separated strands, resulting in two new DNA strands.

Pettitt and his group are particularly interested in the protein that proofs and checks the DNA strands for errors during this process.

“Understanding what these proteins look for as they ‘proofread’ the DNA, where they look, and how they recognize a DNA bulge will help us better understand what goes wrong when the protein can’t recognize the errors,” Pettitt says.

A DNA bulge occurs where an extra base winds up on one side of the DNA strand.

“A bulge is like having a ladder with one extra rung that only goes halfway across,” Pettitt explains.

The bulge can be either a missing base, or an extra one that has been inserted during the DNA copying process. Most bulges happen during replication.

In the research to be presented at the ACS meeting, Pettitt’s team looked at all the various ways a bulge can orient itself along the DNA strand. The researchers built sophisticated computer models of the bulges, based on experimental data. Their computer simulations help them determine how probable each of the various bulge orientation models is.

“No one has looked at these things in the way we have. What we found was that the bulge could sit there on the inside of the helix with nobody across from it, or it could flip outward and point into the solution,” Pettitt says. These were the most likely orientations, but an errant base also could try to bully its way in to the strand and make weird distortions in the whole DNA ladder.

“There’s a range of things that it can wind up doing,” Pettitt says. “We want to focus on the orientations that happen a lot, those that are very probable.”

As for how prevalent bulges are in general, Pettitt says, “this is something we’re definitely working on.”

The UH research is funded by the National Cancer Institute, which is part of the National Institutes of Health.

SOURCE: Pettitt, 713-743-3263; pettitt@uh.edu

Eric Gerber | University of Houston
Further information:
http://www.uh.edu/admin/media/nr/2003/09sept/090703dnabulge.html
http://www.uh.edu/admin/media/sciencelist.html.

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>