Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Battle of the DNA bulge may help thwart cancer

08.09.2003


UH Research Aims to Understand How Mistakes In DNA Replication Lead To Disease



Studies at the University of Houston are shedding light on the mechanisms our bodies use to recognize and repair mistakes in our genetic code, mistakes that, left unchecked, could lead to cancer.

DNA is the body’s blueprint found in every cell, and it carries all our genetic information. Every time a living cell divides to make new cells, it must first make a copy of its DNA, or transcribe it, similar to the way monks used to transcribe old scrolls. If a DNA transcription error is made, the body’s “spellcheckers” may find it and fix it. But if they fail to detect and repair the mistake, the cell’s instructions are altered.


“When a mistake gets through, you have a problem that could lead to a dangerous mutation,” says B. Montgomery Pettitt, the Hugh Roy and Lille Cranz Cullen Distinguished Professor of Chemistry at UH. “If that mistake has turned a good instruction into a bad instruction that says ‘please make nonsense,’ then that could lead to cancer.”

Pettitt and his research group are studying a particular type of DNA transcription error called a bulge, as well as the protein “spellcheckers” responsible for finding and repairing bulges.

“Some of the worst places to get these errors are in the genes that determine cell growth and death,” Pettitt says. “One of the characteristics of cancer cells is that they are essentially immortal, and they’re like Peter Pan – they never grow up. So this inhibiting of normal cell death is one of the real problems.”

Ultimately, the UH studies may lead to more targeted cancer treatments, says Pettitt, who also is director of the Institute for Molecular Design at UH.

Pettitt will present his research on DNA bulges and recognition proteins Sept. 7 at the 226th annual American Chemical Society national meeting in New York, N.Y.

Pettit’s work describing DNA bulges comes fifty years after scientists first described what the normal structure of DNA looks like – a ladder twisted into a helix, or coil. The sides of that ladder are made of sugar and phosphate groups, and the “rungs” are chemical building blocks called bases. There are four different bases, abbreviated A, G, T and C. A pair of bases, joined together, makes up each rung.

As DNA is being copied, a protein untwists and unzips the double helix that joins the base pairs. Another protein then comes along and begins synthesizing the appropriate bases to latch on to each side of the now separated strands, resulting in two new DNA strands.

Pettitt and his group are particularly interested in the protein that proofs and checks the DNA strands for errors during this process.

“Understanding what these proteins look for as they ‘proofread’ the DNA, where they look, and how they recognize a DNA bulge will help us better understand what goes wrong when the protein can’t recognize the errors,” Pettitt says.

A DNA bulge occurs where an extra base winds up on one side of the DNA strand.

“A bulge is like having a ladder with one extra rung that only goes halfway across,” Pettitt explains.

The bulge can be either a missing base, or an extra one that has been inserted during the DNA copying process. Most bulges happen during replication.

In the research to be presented at the ACS meeting, Pettitt’s team looked at all the various ways a bulge can orient itself along the DNA strand. The researchers built sophisticated computer models of the bulges, based on experimental data. Their computer simulations help them determine how probable each of the various bulge orientation models is.

“No one has looked at these things in the way we have. What we found was that the bulge could sit there on the inside of the helix with nobody across from it, or it could flip outward and point into the solution,” Pettitt says. These were the most likely orientations, but an errant base also could try to bully its way in to the strand and make weird distortions in the whole DNA ladder.

“There’s a range of things that it can wind up doing,” Pettitt says. “We want to focus on the orientations that happen a lot, those that are very probable.”

As for how prevalent bulges are in general, Pettitt says, “this is something we’re definitely working on.”

The UH research is funded by the National Cancer Institute, which is part of the National Institutes of Health.

SOURCE: Pettitt, 713-743-3263; pettitt@uh.edu

Eric Gerber | University of Houston
Further information:
http://www.uh.edu/admin/media/nr/2003/09sept/090703dnabulge.html
http://www.uh.edu/admin/media/sciencelist.html.

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>