Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Battle of the DNA bulge may help thwart cancer

08.09.2003


UH Research Aims to Understand How Mistakes In DNA Replication Lead To Disease



Studies at the University of Houston are shedding light on the mechanisms our bodies use to recognize and repair mistakes in our genetic code, mistakes that, left unchecked, could lead to cancer.

DNA is the body’s blueprint found in every cell, and it carries all our genetic information. Every time a living cell divides to make new cells, it must first make a copy of its DNA, or transcribe it, similar to the way monks used to transcribe old scrolls. If a DNA transcription error is made, the body’s “spellcheckers” may find it and fix it. But if they fail to detect and repair the mistake, the cell’s instructions are altered.


“When a mistake gets through, you have a problem that could lead to a dangerous mutation,” says B. Montgomery Pettitt, the Hugh Roy and Lille Cranz Cullen Distinguished Professor of Chemistry at UH. “If that mistake has turned a good instruction into a bad instruction that says ‘please make nonsense,’ then that could lead to cancer.”

Pettitt and his research group are studying a particular type of DNA transcription error called a bulge, as well as the protein “spellcheckers” responsible for finding and repairing bulges.

“Some of the worst places to get these errors are in the genes that determine cell growth and death,” Pettitt says. “One of the characteristics of cancer cells is that they are essentially immortal, and they’re like Peter Pan – they never grow up. So this inhibiting of normal cell death is one of the real problems.”

Ultimately, the UH studies may lead to more targeted cancer treatments, says Pettitt, who also is director of the Institute for Molecular Design at UH.

Pettitt will present his research on DNA bulges and recognition proteins Sept. 7 at the 226th annual American Chemical Society national meeting in New York, N.Y.

Pettit’s work describing DNA bulges comes fifty years after scientists first described what the normal structure of DNA looks like – a ladder twisted into a helix, or coil. The sides of that ladder are made of sugar and phosphate groups, and the “rungs” are chemical building blocks called bases. There are four different bases, abbreviated A, G, T and C. A pair of bases, joined together, makes up each rung.

As DNA is being copied, a protein untwists and unzips the double helix that joins the base pairs. Another protein then comes along and begins synthesizing the appropriate bases to latch on to each side of the now separated strands, resulting in two new DNA strands.

Pettitt and his group are particularly interested in the protein that proofs and checks the DNA strands for errors during this process.

“Understanding what these proteins look for as they ‘proofread’ the DNA, where they look, and how they recognize a DNA bulge will help us better understand what goes wrong when the protein can’t recognize the errors,” Pettitt says.

A DNA bulge occurs where an extra base winds up on one side of the DNA strand.

“A bulge is like having a ladder with one extra rung that only goes halfway across,” Pettitt explains.

The bulge can be either a missing base, or an extra one that has been inserted during the DNA copying process. Most bulges happen during replication.

In the research to be presented at the ACS meeting, Pettitt’s team looked at all the various ways a bulge can orient itself along the DNA strand. The researchers built sophisticated computer models of the bulges, based on experimental data. Their computer simulations help them determine how probable each of the various bulge orientation models is.

“No one has looked at these things in the way we have. What we found was that the bulge could sit there on the inside of the helix with nobody across from it, or it could flip outward and point into the solution,” Pettitt says. These were the most likely orientations, but an errant base also could try to bully its way in to the strand and make weird distortions in the whole DNA ladder.

“There’s a range of things that it can wind up doing,” Pettitt says. “We want to focus on the orientations that happen a lot, those that are very probable.”

As for how prevalent bulges are in general, Pettitt says, “this is something we’re definitely working on.”

The UH research is funded by the National Cancer Institute, which is part of the National Institutes of Health.

SOURCE: Pettitt, 713-743-3263; pettitt@uh.edu

Eric Gerber | University of Houston
Further information:
http://www.uh.edu/admin/media/nr/2003/09sept/090703dnabulge.html
http://www.uh.edu/admin/media/sciencelist.html.

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>