Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows critical role for steroids in insect embryonic development

05.09.2003


A study conducted by University of Utah genetics researchers shows that the steroid hormone ecdysone controls an important phase in the embryonic development of insects, providing an unexpected parallel with the role of the hormone in controlling metamorphosis. The study’s findings also give scientists new insights into how steroids control maturation in higher organisms.



Carl S. Thummel, Ph.D., a Howard Hughes Medical Institute investigator and professor of human genetics at the University of Utah School of Medicine, said that although other studies have established a critical role for ecdysone in controlling insect metamorphosis, very little was known about roles for the hormone during embryonic development.

To find the answer, Thummel and Tatiana Kozlova, a Howard Hughes Medical Institute research associate, looked at the activation pattern of the receptor for ecdysone. They found that this receptor is highly activated in an extraembryonic tissue called amnioserosa, a tissue that does not itself form part of the embryo, but is nonetheless required for embryonic development. Thummel said the source of ecdysone in the early embryo, prior to the development of the insect endocrine organ, has always baffled scientists. "Our findings suggest that the earliest source of hormone is the amnioserosa," he said, "although other sources are likely to contribute at later times."


In addition, Kozlova and Thummel found that disruption of ecdysone signaling resulted in defects in major morphogenetic movements--germband retraction and head involution--that were known to be dependent on the amnioserosa.

These processes convert the body plan from a nondescript embryo to a larva with distinct segments, in preparation for the next stage of development.

This role for ecdysone is unexpectedly similar to the role that the hormone plays in converting the body plan of the larva into an adult insect during metamorphosis, uncovering a new hormone-dependent phase in the insect life cycle.

To explain the importance of the amnioserosa, Thummel compared it with the placenta in mammals. "Like the placenta, the amnioserosa is not a part of the embryo and yet it is a critical source of steroids."

Thummel said the study is significant to geneticists in understanding how steroid hormones control cell movements and maturation in general. It also has implications for agrochemical companies in the development of effective pesticides.

The research, funded by the Howard Hughes Medical Institute, was conducted over a two-year period. Findings will be posted on Science Express, a feature of the online version of Science magazine, on Sept. 4. It will be published in the magazine at a later date.


For more information, contact:
Carl Thummel, U of U Department of Human Genetics, 801-581-2937, OR Cindy Fazzi, U of U Health Sciences Center Office of Public Affairs, 801-581-7387.




Cindy Fazzi | EurekAlert!
Further information:
http://www.uuhsc.utah.edu/

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>