Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows critical role for steroids in insect embryonic development

05.09.2003


A study conducted by University of Utah genetics researchers shows that the steroid hormone ecdysone controls an important phase in the embryonic development of insects, providing an unexpected parallel with the role of the hormone in controlling metamorphosis. The study’s findings also give scientists new insights into how steroids control maturation in higher organisms.



Carl S. Thummel, Ph.D., a Howard Hughes Medical Institute investigator and professor of human genetics at the University of Utah School of Medicine, said that although other studies have established a critical role for ecdysone in controlling insect metamorphosis, very little was known about roles for the hormone during embryonic development.

To find the answer, Thummel and Tatiana Kozlova, a Howard Hughes Medical Institute research associate, looked at the activation pattern of the receptor for ecdysone. They found that this receptor is highly activated in an extraembryonic tissue called amnioserosa, a tissue that does not itself form part of the embryo, but is nonetheless required for embryonic development. Thummel said the source of ecdysone in the early embryo, prior to the development of the insect endocrine organ, has always baffled scientists. "Our findings suggest that the earliest source of hormone is the amnioserosa," he said, "although other sources are likely to contribute at later times."


In addition, Kozlova and Thummel found that disruption of ecdysone signaling resulted in defects in major morphogenetic movements--germband retraction and head involution--that were known to be dependent on the amnioserosa.

These processes convert the body plan from a nondescript embryo to a larva with distinct segments, in preparation for the next stage of development.

This role for ecdysone is unexpectedly similar to the role that the hormone plays in converting the body plan of the larva into an adult insect during metamorphosis, uncovering a new hormone-dependent phase in the insect life cycle.

To explain the importance of the amnioserosa, Thummel compared it with the placenta in mammals. "Like the placenta, the amnioserosa is not a part of the embryo and yet it is a critical source of steroids."

Thummel said the study is significant to geneticists in understanding how steroid hormones control cell movements and maturation in general. It also has implications for agrochemical companies in the development of effective pesticides.

The research, funded by the Howard Hughes Medical Institute, was conducted over a two-year period. Findings will be posted on Science Express, a feature of the online version of Science magazine, on Sept. 4. It will be published in the magazine at a later date.


For more information, contact:
Carl Thummel, U of U Department of Human Genetics, 801-581-2937, OR Cindy Fazzi, U of U Health Sciences Center Office of Public Affairs, 801-581-7387.




Cindy Fazzi | EurekAlert!
Further information:
http://www.uuhsc.utah.edu/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>