Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover early warning system for copper toxicity

05.09.2003


Findings could influence design of anticancer and antimicrobial drugs

Chemists and biologists at Northwestern University have acquired new insight into how a specialized sensor protein, which acts as an early warning system, detects dangerous amounts of the "coinage metals" -- silver, gold and copper -- inside cells. For the first time, researchers can explain this important mechanism at the atomic level.

The findings, to be published Sept. 5 in the journal Science and recently published online by the Journal of the American Chemical Society, should improve our knowledge of diseases related to copper metabolism and influence the design of anticancer and antimicrobial drugs, and may lead to better methods for removing toxic metals from the environment.



By studying the inorganic chemistry of the bacterium E. coli, a research team led by Thomas V. O’Halloran, professor of chemistry at Northwestern, established the molecular and structural basis for the cell’s early detection of miniscule amounts of copper. The work was done in collaboration with Alfonso Mondragon, professor of biochemistry, molecular biology and cell biology at Northwestern, and James E. Penner-Hahn, professor of chemistry at the University of Michigan.

Having determined the structures of copper-, silver- and gold-bound forms of the metalloregulatory protein CueR, the researchers were able to show the protein’s extraordinary sensitivity to copper as well as how the cell distinguishes copper from other metals, such as gold and silver.

"Metals are absolutely essential to the healthy functioning of all cells in the human body," said O’Halloran. "But metals are high-maintenance nutrients. They are finicky and can be particularly destructive if not managed by the cell in the right way. Cells must protect themselves against excess amounts."

O’Halloran likened the cell to a city in which metal ions are similar to important and reactive fuels that must be imported and then carefully delivered from one part of the city to another. Reactive metals such as copper have the potential to catalyze runaway reactions that could harm the cell, much as a series of explosions could damage critical systems in a city. Understanding how a cell properly deals with copper and other potentially toxic metals will aid biomedical researchers in understanding what happens when things go awry in cancer and neurodegenerative disorders, such as Wilson’s, Menkes and Lou Gehrig’s diseases and possibly Alzheimer’s disease.

"Metals are at the center of many emerging problems in health, medicine and the environment," said O’Halloran.


In addition to O’Halloran and Mondragon, other authors on the Science paper are Anita Changela (lead author), Kui Chen, Yi Xue, Jackie Holschen and Caryn Outten, from Northwestern University.

O’Halloran and Penner-Hahn are joined by Kui Chen (lead author), from Northwestern University, and Saodat Yuldasheva, from the University of Michigan, on the paper in the Journal of the American Chemical Society.

Megan Fellman | EurekAlert!
Further information:
http://www.nwu.edu/

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>