Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists uncover early warning system for copper toxicity


Findings could influence design of anticancer and antimicrobial drugs

Chemists and biologists at Northwestern University have acquired new insight into how a specialized sensor protein, which acts as an early warning system, detects dangerous amounts of the "coinage metals" -- silver, gold and copper -- inside cells. For the first time, researchers can explain this important mechanism at the atomic level.

The findings, to be published Sept. 5 in the journal Science and recently published online by the Journal of the American Chemical Society, should improve our knowledge of diseases related to copper metabolism and influence the design of anticancer and antimicrobial drugs, and may lead to better methods for removing toxic metals from the environment.

By studying the inorganic chemistry of the bacterium E. coli, a research team led by Thomas V. O’Halloran, professor of chemistry at Northwestern, established the molecular and structural basis for the cell’s early detection of miniscule amounts of copper. The work was done in collaboration with Alfonso Mondragon, professor of biochemistry, molecular biology and cell biology at Northwestern, and James E. Penner-Hahn, professor of chemistry at the University of Michigan.

Having determined the structures of copper-, silver- and gold-bound forms of the metalloregulatory protein CueR, the researchers were able to show the protein’s extraordinary sensitivity to copper as well as how the cell distinguishes copper from other metals, such as gold and silver.

"Metals are absolutely essential to the healthy functioning of all cells in the human body," said O’Halloran. "But metals are high-maintenance nutrients. They are finicky and can be particularly destructive if not managed by the cell in the right way. Cells must protect themselves against excess amounts."

O’Halloran likened the cell to a city in which metal ions are similar to important and reactive fuels that must be imported and then carefully delivered from one part of the city to another. Reactive metals such as copper have the potential to catalyze runaway reactions that could harm the cell, much as a series of explosions could damage critical systems in a city. Understanding how a cell properly deals with copper and other potentially toxic metals will aid biomedical researchers in understanding what happens when things go awry in cancer and neurodegenerative disorders, such as Wilson’s, Menkes and Lou Gehrig’s diseases and possibly Alzheimer’s disease.

"Metals are at the center of many emerging problems in health, medicine and the environment," said O’Halloran.

In addition to O’Halloran and Mondragon, other authors on the Science paper are Anita Changela (lead author), Kui Chen, Yi Xue, Jackie Holschen and Caryn Outten, from Northwestern University.

O’Halloran and Penner-Hahn are joined by Kui Chen (lead author), from Northwestern University, and Saodat Yuldasheva, from the University of Michigan, on the paper in the Journal of the American Chemical Society.

Megan Fellman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>