Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover early warning system for copper toxicity

05.09.2003


Findings could influence design of anticancer and antimicrobial drugs

Chemists and biologists at Northwestern University have acquired new insight into how a specialized sensor protein, which acts as an early warning system, detects dangerous amounts of the "coinage metals" -- silver, gold and copper -- inside cells. For the first time, researchers can explain this important mechanism at the atomic level.

The findings, to be published Sept. 5 in the journal Science and recently published online by the Journal of the American Chemical Society, should improve our knowledge of diseases related to copper metabolism and influence the design of anticancer and antimicrobial drugs, and may lead to better methods for removing toxic metals from the environment.



By studying the inorganic chemistry of the bacterium E. coli, a research team led by Thomas V. O’Halloran, professor of chemistry at Northwestern, established the molecular and structural basis for the cell’s early detection of miniscule amounts of copper. The work was done in collaboration with Alfonso Mondragon, professor of biochemistry, molecular biology and cell biology at Northwestern, and James E. Penner-Hahn, professor of chemistry at the University of Michigan.

Having determined the structures of copper-, silver- and gold-bound forms of the metalloregulatory protein CueR, the researchers were able to show the protein’s extraordinary sensitivity to copper as well as how the cell distinguishes copper from other metals, such as gold and silver.

"Metals are absolutely essential to the healthy functioning of all cells in the human body," said O’Halloran. "But metals are high-maintenance nutrients. They are finicky and can be particularly destructive if not managed by the cell in the right way. Cells must protect themselves against excess amounts."

O’Halloran likened the cell to a city in which metal ions are similar to important and reactive fuels that must be imported and then carefully delivered from one part of the city to another. Reactive metals such as copper have the potential to catalyze runaway reactions that could harm the cell, much as a series of explosions could damage critical systems in a city. Understanding how a cell properly deals with copper and other potentially toxic metals will aid biomedical researchers in understanding what happens when things go awry in cancer and neurodegenerative disorders, such as Wilson’s, Menkes and Lou Gehrig’s diseases and possibly Alzheimer’s disease.

"Metals are at the center of many emerging problems in health, medicine and the environment," said O’Halloran.


In addition to O’Halloran and Mondragon, other authors on the Science paper are Anita Changela (lead author), Kui Chen, Yi Xue, Jackie Holschen and Caryn Outten, from Northwestern University.

O’Halloran and Penner-Hahn are joined by Kui Chen (lead author), from Northwestern University, and Saodat Yuldasheva, from the University of Michigan, on the paper in the Journal of the American Chemical Society.

Megan Fellman | EurekAlert!
Further information:
http://www.nwu.edu/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>