Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA throttle controls molecular machine

05.09.2003


A DNA sequence that acts as a throttle to control the rate at which an enzyme moves along the DNA has been observed by researchers at UC Davis. By controlling the activity of the RecBCD helicase enzyme, the "Chi" sequence can affect how efficiently genes are repaired.

RecBCD unwinds the DNA double helix so that the genetic code can be read, copied or repaired. This unwinding is an essential first step in most processes involving DNA.

The research findings, which are published in the September 5 issue of the journal Cell, could explain how short DNA sequences such as Chi can interact with enzymes and affect how DNA is copied or repaired. They could also give insight into how to control the speed of tiny nanomachines built for various purposes.



The enzyme moves along DNA at a rate of up to 1000 base pairs a second. Using special apparatus to film single enzymes at work in real time, the UC Davis researchers found that when RecBCD reaches the eight-letter Chi sequence, it stops for up to 10 seconds and then carries on at half speed.

The researchers attached DNA molecules labeled with a fluorescent dye to polystyrene beads one-millionth of a millimeter in size. Under the microscope, the bead looks like a white sphere with a bright string of DNA attached.

The researchers were postdoctoral scholars Maria Spies, Piero Bianco, Mark Dillingham and Naofumi Handa with Stephen Kowalczykowski, professor of microbiology and director of the UC Davis Center for Genes and Development, and Ronald Baskin, professor of molecular and cell biology.

They let RecBCD attach to the free end of the DNA strand, and used laser beams as "optical tweezers" to move the beads into position under a microscope.

As RecBCD unwinds the DNA strands, the fluorescent dye is removed, so the bright string of DNA appears to shorten.

When the researchers put RecBCD onto DNA molecules carrying the Chi sequence, they found that RecBCD stops for up to 10 seconds when it reaches the beginning of the Chi sequence, then continues at a slower rate.

"It’s a complete surprise," Kowalczykowski said. The results would have been impossible to find with a conventional bulk experiment averaging the activity of many enzymes and DNA molecules, he said.

RecBCD is a molecular machine made up of three proteins. Two of these are motor units that propel the enzyme along the DNA double helix. Kowalczykowski believes that the change in velocity is due to one of two motor subunits in RecBCD being switched off by the Chi sequence.

The Chi sequence is known to be associated with "hotspots" where genes are readily exchanged, or recombined, between chromosomes.


Media contact:
Andy Fell, UC Davis News Service, (530) 752-4533, ahfell@ucdavis.edu

Andy Fell | UC Davis
Further information:
http://www.news.ucdavis.edu/search/news_detail.lasso?id=6671

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>