Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA throttle controls molecular machine

05.09.2003


A DNA sequence that acts as a throttle to control the rate at which an enzyme moves along the DNA has been observed by researchers at UC Davis. By controlling the activity of the RecBCD helicase enzyme, the "Chi" sequence can affect how efficiently genes are repaired.

RecBCD unwinds the DNA double helix so that the genetic code can be read, copied or repaired. This unwinding is an essential first step in most processes involving DNA.

The research findings, which are published in the September 5 issue of the journal Cell, could explain how short DNA sequences such as Chi can interact with enzymes and affect how DNA is copied or repaired. They could also give insight into how to control the speed of tiny nanomachines built for various purposes.



The enzyme moves along DNA at a rate of up to 1000 base pairs a second. Using special apparatus to film single enzymes at work in real time, the UC Davis researchers found that when RecBCD reaches the eight-letter Chi sequence, it stops for up to 10 seconds and then carries on at half speed.

The researchers attached DNA molecules labeled with a fluorescent dye to polystyrene beads one-millionth of a millimeter in size. Under the microscope, the bead looks like a white sphere with a bright string of DNA attached.

The researchers were postdoctoral scholars Maria Spies, Piero Bianco, Mark Dillingham and Naofumi Handa with Stephen Kowalczykowski, professor of microbiology and director of the UC Davis Center for Genes and Development, and Ronald Baskin, professor of molecular and cell biology.

They let RecBCD attach to the free end of the DNA strand, and used laser beams as "optical tweezers" to move the beads into position under a microscope.

As RecBCD unwinds the DNA strands, the fluorescent dye is removed, so the bright string of DNA appears to shorten.

When the researchers put RecBCD onto DNA molecules carrying the Chi sequence, they found that RecBCD stops for up to 10 seconds when it reaches the beginning of the Chi sequence, then continues at a slower rate.

"It’s a complete surprise," Kowalczykowski said. The results would have been impossible to find with a conventional bulk experiment averaging the activity of many enzymes and DNA molecules, he said.

RecBCD is a molecular machine made up of three proteins. Two of these are motor units that propel the enzyme along the DNA double helix. Kowalczykowski believes that the change in velocity is due to one of two motor subunits in RecBCD being switched off by the Chi sequence.

The Chi sequence is known to be associated with "hotspots" where genes are readily exchanged, or recombined, between chromosomes.


Media contact:
Andy Fell, UC Davis News Service, (530) 752-4533, ahfell@ucdavis.edu

Andy Fell | UC Davis
Further information:
http://www.news.ucdavis.edu/search/news_detail.lasso?id=6671

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>