Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cooperation is a no-brainer for symbiotic bacteria

04.09.2003


Humans may learn cooperation in kindergarten, but what about bacteria, whose behavior is preprogrammed by their DNA?



Some legume plants, which rely on beneficial soil bacteria called rhizobia that infect their roots and provide nitrogen, seem to promote cooperation by exacting a toll on those bacterial strains that don’t hold up their end of the symbiotic bargain, according to a team of researchers at the University of California, Davis.

"In the case of soybeans, it appears that the plant applies sanctions against rhizobia that don’t provide nitrogen. The plant does this by decreasing the oxygen supply to the rhizobia," said R. Ford Denison, a crop ecologist in the UC Davis Department of Agronomy and Range Science. "In this way, the host plant can control the environment of the symbiotic bacteria to favor the evolution of cooperation by ensuring that bacterial ’cheaters’ reproduce less."


Findings from this study, to be reported in a letter in the Sept. 4 issue of the journal Nature, may one day lead to crops that selectively favor the most productive, beneficial strains of rhizobia, thus making optimal use of naturally available nitrogen.

Scientists have long been intrigued by the cooperative relationships between certain legumes -- peas, soybeans and alfalfa -- and the soil bacteria that "fix," or convert, nitrogen from the air into a form that can be used by the plant. While the rhizobia produce nitrogen for the plant, the plant returns the favor by providing nutrients necessary for the growth and reproduction of the bacteria.

Such mutually beneficial relationships are common in nature and would be easier to understand if there were only one bacterial strain associated with the plant. But there are often several competing strains interacting with the plant, and not all of those strains fix nitrogen at the same rate.

Why wouldn’t the bacteria that don’t expend energy and resources on fixing nitrogen for the plant be fitter because they have more resources available for their own growth and reproduction? Wouldn’t the bacterial species that dutifully provide the plant with nitrogen eventually lose out to their goldbricking cousins that aren’t doing so?

Denison and colleagues suspected that the plants were somehow penalizing rhizobial species that "cheat" on the symbiotic relationship by fixing little or no nitrogen for the plant. To test that hypothesis, they altered the atmospheric conditions surrounding soybean root nodules containing the rhizobia. By replacing the air with a nitrogen-free argon-and-oxygen mixture, they reduced the rhizobia’s ability to fix nitrogen to just 1 percent of normal -- forcing the bacteria to shirk their nitrogen-fixing duties.

The researchers observed the impact of this simulated rhizobial cheating on whole soybean plants, on root systems split in half and grown in different atmospheres, and on individual root nodules.

They discovered that the plants appeared to retaliate by decreasing the supply of oxygen to the root nodules inhabited by the rhizobial species that failed to fix nitrogen. They also found that nitrogen-fixing populations consistently grew to larger numbers over time, perhaps because they had access to more oxygen. The root nodules inhabited by nitrogen-fixing rhizobia grew more, so they cost the plant more but not relative to the benefits they provided to the plant.

"The data illustrate that the soybean plants selectively reward or punish their symbiotic bacteria, based on the amount of nitrogen they provide to the plant hosts," Denison said. "This mechanism helps explain why this ancient cooperation between the plant and various rhizobial strains hasn’t already broken down."

He noted that such breakdown in cooperation between species can have serious consequences, as in the case of coral bleaching that results when algae leave or are expelled from the coral.


Collaborating with Denison on this study were E. Toby Kiers and Robert A. Rousseau of UC Davis’ Department of Agronomy and Range Science, and Stuart A. West of the Institute of Cell, Animal & Population Biology at the University of Edinburgh.

Funding for the study was provided by the National Science Foundation, the California Agricultural Experiment Station, the Land Institute, the Royal Society, the Biotechnology and Biological Sciences Research Council, the Natural Environment Research Council and the UC Davis Department of Agronomy and Range Science.

Media contact(s):
* Pat Bailey, UC Davis News Service, (530) 752-9843,
pjbailey@ucdavis.edu

Additional contact(s):
* Ford Denison, Agronomy and Range Science, (530) 752-9688 , rfdenison@ucdavis.edu
* Toby Kiers, Agronomy and Range Science, (207)963-7016

Pat Bailey | EurekAlert!
Further information:
http://www.ucdavis.edu/

More articles from Life Sciences:

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Heavy nitrogen molecules reveal planetary-scale tug-of-war

20.11.2017 | Earth Sciences

Taking a spin on plasma space tornadoes with NASA observations

20.11.2017 | Physics and Astronomy

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>