Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nurseries in the deep sea

04.09.2003


Exploring a deep-sea ridge off Northern California, scientists at the Monterey Bay Aquarium Research Institute (MBARI) have discovered a unique undersea nursery, where groups of fish and octopus brood their eggs, like chickens on their nests. This is the first time that marine biologists have directly observed any deep-sea fish brooding its eggs. It is also the first time that two different types of mobile deep-sea animals have been observed brooding together in the same area. Although the scientists do not know exactly why the animals prefer this one area, they believe that the nursery represents a new type of biological “hot spot” (an area of intense biological activity).


A blob sculpin (Psychrolutes phrictus) peers over the edge of a boulder at the ROV Tiburon. This fish is guarding its eggs (which you can see in the background) along the Gorda Escarpment, off Northern California. Blob sculpin commonly grow to 60 cm (2 feet) in length. The animals on the rock are brisingid sea stars (with the feathery arms) and sea anemones. Image (c) 2002 MBARI


Three octopus (Graneledone sp.) brood their eggs on a rock outcrop along the Mendocino Escarpment, offshore of Northern California. The octopus are in a typical brooding position, with their heads down and arms curled outward. Their eggs are hidden underneath their bodies, which are about 16 cm (6 inches) across. Also on the rock are a deep-sea crab and several types of sea anemones. This photograph suggests some of the abundance and diversity of marine life found around the undersea nursery areas along the Gorda Escarpment off Northern California. Image (c) 2002 MBARI



MBARI scientist Jeff Drazen presented these observations last week at the Deep Sea Biology Symposium in Coos Bay, Oregon. His research is also featured in the current (August 2003) issue of Biological Bulletin, which shows photographs of the brooding fish and octopus on its cover.

The undersea nursery was discovered and documented using MBARI’s remotely operated vehicle (ROV) Tiburon. Using video tapes from Tiburon dives, Drazen and colleagues found that each summer, blob sculpin (Psychrolutes phrictus) and deep-sea octopus (Graneledone sp.) gather together at the crest of the Gorda Escarpment, off Northern California.


"The sculpin nests look like large splotches of purple strewn across the surfaces of boulders,” says Drazen. “The parent fish is usually resting on the seafloor near or on top of the eggs. When I first saw this in the video, I was surprised because no one had ever documented such behavior in a deep-sea fish before.” Blob sculpin are typically about 60 cm (2 feet) long and shaped like large, flabby tadpoles. Drazen estimates that some sculpin nests may contain up to 100,000 eggs. The nursery area lies near the crest of an undersea rise, almost a mile below the ocean surface.

MBARI geologists first encountered these nursery areas in August 2000. While performing geological surveys with ROV Tiburon, they noticed that octopus and blob sculpin were common near certain cold seeps, where hydrocarbon-rich fluids seep out of the seafloor. When they returned to the region in 2001, they brought along biologists, who realized that the octopus were present in unusually large numbers. On one dive, the ROV also brought up a rock sample which was covered with eggs. It wasn’t until later, when Drazen watched videotapes of these dives, that he realized both the fish and the octopus might be brooding eggs. Intrigued, Drazen organized a third dive in July 2002, to count the animals and their eggs and to make more observations. The high densities of animals measured in certain areas convinced Drazen that these nurseries might qualify as biological hot spots.

Previously discovered biological hot spots in the deep sea, such as hydrothermal vents and the tops of seamounts, have been related to geological or topographic features that cause an increase the availability of food. The nurseries on the Gorda Escarpment may represent a totally different type of hot spot, where physical conditions particularly favor the development of eggs. Drazen is still not sure what aspect of the physical environment makes this spot so popular for brooding animals.

Whatever the key conditions may be, Drazen points out that these areas are critical habitat for the species involved. He and his co-authors are concerned that these undersea nurseries could be endangered by commercial trawling or long-line fishing. Such fishing has expanded into the deep sea as near-shore fish stocks have declined. For this reason, Drazen suggests that reproductive hot spots such as this might qualify as areas to be protected from fishing.

Finding one reproductive hot spot may also help scientists discover other such areas. But as Drazen points out, “Unlike hydrothermal vent and seamount communities, which persist for generations, reproductive hot spots may be seasonal and transitory. This makes such sites especially hard to find. We hope to learn more about why these animals aggregate on the ridge and use this information to narrow our search for other important nurseries in the deep sea.”

Debbie Meyer | MBARI
Further information:
http://www.mbari.org/news/news_releases/2003/nr05-drazen.html

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>