Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nurseries in the deep sea

04.09.2003


Exploring a deep-sea ridge off Northern California, scientists at the Monterey Bay Aquarium Research Institute (MBARI) have discovered a unique undersea nursery, where groups of fish and octopus brood their eggs, like chickens on their nests. This is the first time that marine biologists have directly observed any deep-sea fish brooding its eggs. It is also the first time that two different types of mobile deep-sea animals have been observed brooding together in the same area. Although the scientists do not know exactly why the animals prefer this one area, they believe that the nursery represents a new type of biological “hot spot” (an area of intense biological activity).


A blob sculpin (Psychrolutes phrictus) peers over the edge of a boulder at the ROV Tiburon. This fish is guarding its eggs (which you can see in the background) along the Gorda Escarpment, off Northern California. Blob sculpin commonly grow to 60 cm (2 feet) in length. The animals on the rock are brisingid sea stars (with the feathery arms) and sea anemones. Image (c) 2002 MBARI


Three octopus (Graneledone sp.) brood their eggs on a rock outcrop along the Mendocino Escarpment, offshore of Northern California. The octopus are in a typical brooding position, with their heads down and arms curled outward. Their eggs are hidden underneath their bodies, which are about 16 cm (6 inches) across. Also on the rock are a deep-sea crab and several types of sea anemones. This photograph suggests some of the abundance and diversity of marine life found around the undersea nursery areas along the Gorda Escarpment off Northern California. Image (c) 2002 MBARI



MBARI scientist Jeff Drazen presented these observations last week at the Deep Sea Biology Symposium in Coos Bay, Oregon. His research is also featured in the current (August 2003) issue of Biological Bulletin, which shows photographs of the brooding fish and octopus on its cover.

The undersea nursery was discovered and documented using MBARI’s remotely operated vehicle (ROV) Tiburon. Using video tapes from Tiburon dives, Drazen and colleagues found that each summer, blob sculpin (Psychrolutes phrictus) and deep-sea octopus (Graneledone sp.) gather together at the crest of the Gorda Escarpment, off Northern California.


"The sculpin nests look like large splotches of purple strewn across the surfaces of boulders,” says Drazen. “The parent fish is usually resting on the seafloor near or on top of the eggs. When I first saw this in the video, I was surprised because no one had ever documented such behavior in a deep-sea fish before.” Blob sculpin are typically about 60 cm (2 feet) long and shaped like large, flabby tadpoles. Drazen estimates that some sculpin nests may contain up to 100,000 eggs. The nursery area lies near the crest of an undersea rise, almost a mile below the ocean surface.

MBARI geologists first encountered these nursery areas in August 2000. While performing geological surveys with ROV Tiburon, they noticed that octopus and blob sculpin were common near certain cold seeps, where hydrocarbon-rich fluids seep out of the seafloor. When they returned to the region in 2001, they brought along biologists, who realized that the octopus were present in unusually large numbers. On one dive, the ROV also brought up a rock sample which was covered with eggs. It wasn’t until later, when Drazen watched videotapes of these dives, that he realized both the fish and the octopus might be brooding eggs. Intrigued, Drazen organized a third dive in July 2002, to count the animals and their eggs and to make more observations. The high densities of animals measured in certain areas convinced Drazen that these nurseries might qualify as biological hot spots.

Previously discovered biological hot spots in the deep sea, such as hydrothermal vents and the tops of seamounts, have been related to geological or topographic features that cause an increase the availability of food. The nurseries on the Gorda Escarpment may represent a totally different type of hot spot, where physical conditions particularly favor the development of eggs. Drazen is still not sure what aspect of the physical environment makes this spot so popular for brooding animals.

Whatever the key conditions may be, Drazen points out that these areas are critical habitat for the species involved. He and his co-authors are concerned that these undersea nurseries could be endangered by commercial trawling or long-line fishing. Such fishing has expanded into the deep sea as near-shore fish stocks have declined. For this reason, Drazen suggests that reproductive hot spots such as this might qualify as areas to be protected from fishing.

Finding one reproductive hot spot may also help scientists discover other such areas. But as Drazen points out, “Unlike hydrothermal vent and seamount communities, which persist for generations, reproductive hot spots may be seasonal and transitory. This makes such sites especially hard to find. We hope to learn more about why these animals aggregate on the ridge and use this information to narrow our search for other important nurseries in the deep sea.”

Debbie Meyer | MBARI
Further information:
http://www.mbari.org/news/news_releases/2003/nr05-drazen.html

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>