Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fishing for photos of rare or unknown deep-sea creatures with an electronic jellyfish lure

03.09.2003


Harbor Branch researcher deploying innovative camera system in Monterey Bay


Dr. Edith Widder and the Eye in the Sea system


Atolla Jellyfish



Using a new lighted jellyfish lure and a unique camera system, researchers from HARBOR BRANCH are working to reveal for the first time life in the deep sea unaltered by the cacophony of sound and light that have been an integral part of most past research there. From Sept 2-5 a team will be using the lure for the first time in the dark depths of California’s Monterey Bay.

"We are hoping to do some honest to goodness unobtrusive observation, which really hasn’t happened in the ocean," says Dr. Edith Widder, head of HARBOR BRANCH’s Biophotonics Center and project leader, "Ultimately the goal is to see animals or behaviors nobody has ever seen before."


The deep sea makes up about 78% of the planet’s inhabitable volume, but little is known about most of its inhabitants, more than half of which are capable of making their own light, or bioluminescence. This scientific deficiency stems from not only a lack of exploration and study of the oceans, but also from less than ideal traditional research methods. Deep-towed nets can shred animals like jellyfish or damage captured animals to the point that their natural behaviors cannot be observed in the lab. Manned submersibles and remotely operated vehicles (ROVs) can deliver humans to the depths in person or virtually to observe some animals in their natural environment. However, they typically do not allow researchers to see animals’ natural behaviors because the lights, motors and electric fields such vehicles bring with them are more than enough to either scare animals away before they’re ever seen or frighten them into unnatural behavior.

To get around such problems, Dr. Widder dreamed of and then, in partnership with the institution’s Engineering Division, created an innovative camera system to record life in the abyss unobtrusively. Called "Eye in the Sea," the system is designed to operate on the seafloor automatically and, most importantly, unnoticed by animals. The system can detect animals nearby when they give off bioluminescent light, trigger a video camera to record the light being produced, then turn on a red light out of the animals’ normal vision range to take illuminated footage. The system can also be programmed to film surrounding areas at scheduled intervals, for instance when the team places the system on the bottom along with bait to attract animals. In the past camera systems used on the seafloor have relied on bright and, for those creatures accustomed to the darkness of the depths, frightening lights.

The Eye in the Sea has been tested alone during brief deployments, and has already captured unusual interactions, such as a primitive hagfish annoying a shark (photo available). Widder now plans to take the deep-sea observation work one step further by deploying the camera system along with a simple electronic device designed to mimic the various bioluminescent light patterns given off by jellyfish known as Atolla. Various Atolla species are common in the deep sea and look something like a tie-dye splotch when their round bodies are viewed from above. The artificial jellyfish lure is a round disc about six inches across with a ring of blue LED lights around its outer edge that can be programmed to light up in patterns similar to those created by the jellyfish.

Widder hopes the lure will allow her to test various hypotheses about how and why animals such as jellyfish use their bioluminescent light. For instance, when threatened, the jellyfish sometimes respond by creating a circular wave of light around their outer edge that progresses like the lights on a movie marquis. Scientists call this a "burglar alarm" response and theorize that jellyfish use it to attract large animals in to eat whatever animal is attacking the jellyfish. To test that theory and others, the team will deploy the Eye in the Sea next to a box of bait along with the artificial jellyfish, which will be programmed to produce various displays, to see how animals in the area respond. The jellyfish lure could also attract large predators to the area, which would be captured on film.

The team will be deploying the equipment at a depth of about 700 meters (2300 feet) in the Monterey Canyon using the Ventana ROV, owned and operated by the Monterey Bay Aquarium Research Institute (www.mbari.org), where Widder is also an adjunct researcher. They will head to the site aboard MBARI’s Point Lobos research vessel on Sept. 2 for the first deployment, and on subsequent days bring the equipment to the surface to download video then redeploy for more recording on the seafloor.

On future expeditions, Widder hopes to leave the systems deployed on the seabed at various sites for long time periods to get a more complete view of life in the deep.



HARBOR BRANCH Oceanographic Institution was founded in Ft. Pierce, Fla., in 1971 to support the exploration and conservation of the world’s oceans. The institution has held to this mission and grown into one of the world’s leading oceanographic institutions with a 500-acre campus, over 200 personnel, and a fleet of sophisticated research ships and submersibles. For more information about HARBOR BRANCH please visit: www.hboi.edu/media.

Mark Schrope | EurekAlert!
Further information:
http://www.hboi.edu/

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>