Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fishing for photos of rare or unknown deep-sea creatures with an electronic jellyfish lure

03.09.2003


Harbor Branch researcher deploying innovative camera system in Monterey Bay


Dr. Edith Widder and the Eye in the Sea system


Atolla Jellyfish



Using a new lighted jellyfish lure and a unique camera system, researchers from HARBOR BRANCH are working to reveal for the first time life in the deep sea unaltered by the cacophony of sound and light that have been an integral part of most past research there. From Sept 2-5 a team will be using the lure for the first time in the dark depths of California’s Monterey Bay.

"We are hoping to do some honest to goodness unobtrusive observation, which really hasn’t happened in the ocean," says Dr. Edith Widder, head of HARBOR BRANCH’s Biophotonics Center and project leader, "Ultimately the goal is to see animals or behaviors nobody has ever seen before."


The deep sea makes up about 78% of the planet’s inhabitable volume, but little is known about most of its inhabitants, more than half of which are capable of making their own light, or bioluminescence. This scientific deficiency stems from not only a lack of exploration and study of the oceans, but also from less than ideal traditional research methods. Deep-towed nets can shred animals like jellyfish or damage captured animals to the point that their natural behaviors cannot be observed in the lab. Manned submersibles and remotely operated vehicles (ROVs) can deliver humans to the depths in person or virtually to observe some animals in their natural environment. However, they typically do not allow researchers to see animals’ natural behaviors because the lights, motors and electric fields such vehicles bring with them are more than enough to either scare animals away before they’re ever seen or frighten them into unnatural behavior.

To get around such problems, Dr. Widder dreamed of and then, in partnership with the institution’s Engineering Division, created an innovative camera system to record life in the abyss unobtrusively. Called "Eye in the Sea," the system is designed to operate on the seafloor automatically and, most importantly, unnoticed by animals. The system can detect animals nearby when they give off bioluminescent light, trigger a video camera to record the light being produced, then turn on a red light out of the animals’ normal vision range to take illuminated footage. The system can also be programmed to film surrounding areas at scheduled intervals, for instance when the team places the system on the bottom along with bait to attract animals. In the past camera systems used on the seafloor have relied on bright and, for those creatures accustomed to the darkness of the depths, frightening lights.

The Eye in the Sea has been tested alone during brief deployments, and has already captured unusual interactions, such as a primitive hagfish annoying a shark (photo available). Widder now plans to take the deep-sea observation work one step further by deploying the camera system along with a simple electronic device designed to mimic the various bioluminescent light patterns given off by jellyfish known as Atolla. Various Atolla species are common in the deep sea and look something like a tie-dye splotch when their round bodies are viewed from above. The artificial jellyfish lure is a round disc about six inches across with a ring of blue LED lights around its outer edge that can be programmed to light up in patterns similar to those created by the jellyfish.

Widder hopes the lure will allow her to test various hypotheses about how and why animals such as jellyfish use their bioluminescent light. For instance, when threatened, the jellyfish sometimes respond by creating a circular wave of light around their outer edge that progresses like the lights on a movie marquis. Scientists call this a "burglar alarm" response and theorize that jellyfish use it to attract large animals in to eat whatever animal is attacking the jellyfish. To test that theory and others, the team will deploy the Eye in the Sea next to a box of bait along with the artificial jellyfish, which will be programmed to produce various displays, to see how animals in the area respond. The jellyfish lure could also attract large predators to the area, which would be captured on film.

The team will be deploying the equipment at a depth of about 700 meters (2300 feet) in the Monterey Canyon using the Ventana ROV, owned and operated by the Monterey Bay Aquarium Research Institute (www.mbari.org), where Widder is also an adjunct researcher. They will head to the site aboard MBARI’s Point Lobos research vessel on Sept. 2 for the first deployment, and on subsequent days bring the equipment to the surface to download video then redeploy for more recording on the seafloor.

On future expeditions, Widder hopes to leave the systems deployed on the seabed at various sites for long time periods to get a more complete view of life in the deep.



HARBOR BRANCH Oceanographic Institution was founded in Ft. Pierce, Fla., in 1971 to support the exploration and conservation of the world’s oceans. The institution has held to this mission and grown into one of the world’s leading oceanographic institutions with a 500-acre campus, over 200 personnel, and a fleet of sophisticated research ships and submersibles. For more information about HARBOR BRANCH please visit: www.hboi.edu/media.

Mark Schrope | EurekAlert!
Further information:
http://www.hboi.edu/

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>