Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unravelling The Ecology Of Snail Shell Coiling

01.09.2003


Ecologists are taking to the trees in a bid to unravel the ecology of shell coiling in snails. Speaking at the British Ecological Society’s Annual Meeting, being held at Manchester Metropolitan University on 9-11 September 2003, Dr Paul Craze of the University of Plymouth will explain how examining the proportion of right- and left-coiling individuals in a species of Bornean tree snail could help ecologists understand how new species arise.



The vast majority of snail species are almost exclusively dextral, or right-coilers, with just the occasional sinistral, or left-coiling, individual. However, in a small number of snail species there appears to be a stable balance between the number of right- and left-coilers. Coil direction in snails is inherited from the mother and is controlled by a single genetic locus or region, and coil direction is important because it is difficult for right-coiling snails to mate with left-coiling snails.

The fact that left- and right-coiling snails cannot align themselves properly during mating is, however, more than an irritation to the snails and an interesting puzzle for ecologists. Understanding how new species arise is a fundamental biological problem, and in the case of snails, some ecologists believe that the existence of left- and right-coiling individuals could be one mechanism for sympatric speciation (the development of new species by isolating them other than geographically). Since left-coiling and right-coiling snails find it hard to mate with each other they may, over time, develop into separate species.


Dr Craze and Dr Menno Schilthuizen of the Universiti Malaysia Sabah studied shell coiling in Amphidromus martensii, a snail that lives in the rainforests of Borneo, and one of the few species that is composed of roughly 50% right- and 50% left-coiling individuals, to find out what factors are responsible for maintaining this 50:50 split, and whether or not the right- and left-coilers show evidence of diverging towards becoming different species.

“There has been virtually no ecological study of shell-coiling polymorphism, so the first thing we were interested in was whether the 50:50 ratio that we know exists at the medium scale (ie between sites separated by tens of kilometres) also exists at a smaller scale (ie between sites separated by tens of metres), or whether the right coilers occupied different habitats from the left coilers,” Dr Craze says.

Because A. martensii lives in the forest canopy, Dr Craze chose to collect shells of dead snails from the ground. “We found equal numbers of left and right coilers no matter what scale we chose, which suggests that we are dealing with a truly balanced polymorphism and that these snails are not at the early stages of speciation. If that turns out to be the case, we need to identify what factors are responsible for keeping the polymorphism so balanced,” Dr Craze explains.

However, to make sure that the results they have found are not only confined to snail shells found on the ground, Dr Craze will be repeating the experiment by hanging from a rope in the rainforest looking at live snails in the forest canopy. “We also plan to use small snail-sized radio transmitters to track movements of snails to see how many snails of each coil-type an individual is likely to encounter and so work out the potential for gene flow between areas,” he says.

According to Dr Craze: “Our work may have some interesting implications. Studies of the ecological factors responsible for maintaining balanced polymorphism are still quite rare. On the other hand, if some degree of divergence between the coil-types is discovered, we have a model system for studying what may be an interesting mechanism of sympatric speciation.”

Dr Craze will present his full findings at 15:00 on Tuesday 9 September 2003.

Becky Allen | alfa
Further information:
http://www.britishecologicalsociety.org/

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>