Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unravelling The Ecology Of Snail Shell Coiling

01.09.2003


Ecologists are taking to the trees in a bid to unravel the ecology of shell coiling in snails. Speaking at the British Ecological Society’s Annual Meeting, being held at Manchester Metropolitan University on 9-11 September 2003, Dr Paul Craze of the University of Plymouth will explain how examining the proportion of right- and left-coiling individuals in a species of Bornean tree snail could help ecologists understand how new species arise.



The vast majority of snail species are almost exclusively dextral, or right-coilers, with just the occasional sinistral, or left-coiling, individual. However, in a small number of snail species there appears to be a stable balance between the number of right- and left-coilers. Coil direction in snails is inherited from the mother and is controlled by a single genetic locus or region, and coil direction is important because it is difficult for right-coiling snails to mate with left-coiling snails.

The fact that left- and right-coiling snails cannot align themselves properly during mating is, however, more than an irritation to the snails and an interesting puzzle for ecologists. Understanding how new species arise is a fundamental biological problem, and in the case of snails, some ecologists believe that the existence of left- and right-coiling individuals could be one mechanism for sympatric speciation (the development of new species by isolating them other than geographically). Since left-coiling and right-coiling snails find it hard to mate with each other they may, over time, develop into separate species.


Dr Craze and Dr Menno Schilthuizen of the Universiti Malaysia Sabah studied shell coiling in Amphidromus martensii, a snail that lives in the rainforests of Borneo, and one of the few species that is composed of roughly 50% right- and 50% left-coiling individuals, to find out what factors are responsible for maintaining this 50:50 split, and whether or not the right- and left-coilers show evidence of diverging towards becoming different species.

“There has been virtually no ecological study of shell-coiling polymorphism, so the first thing we were interested in was whether the 50:50 ratio that we know exists at the medium scale (ie between sites separated by tens of kilometres) also exists at a smaller scale (ie between sites separated by tens of metres), or whether the right coilers occupied different habitats from the left coilers,” Dr Craze says.

Because A. martensii lives in the forest canopy, Dr Craze chose to collect shells of dead snails from the ground. “We found equal numbers of left and right coilers no matter what scale we chose, which suggests that we are dealing with a truly balanced polymorphism and that these snails are not at the early stages of speciation. If that turns out to be the case, we need to identify what factors are responsible for keeping the polymorphism so balanced,” Dr Craze explains.

However, to make sure that the results they have found are not only confined to snail shells found on the ground, Dr Craze will be repeating the experiment by hanging from a rope in the rainforest looking at live snails in the forest canopy. “We also plan to use small snail-sized radio transmitters to track movements of snails to see how many snails of each coil-type an individual is likely to encounter and so work out the potential for gene flow between areas,” he says.

According to Dr Craze: “Our work may have some interesting implications. Studies of the ecological factors responsible for maintaining balanced polymorphism are still quite rare. On the other hand, if some degree of divergence between the coil-types is discovered, we have a model system for studying what may be an interesting mechanism of sympatric speciation.”

Dr Craze will present his full findings at 15:00 on Tuesday 9 September 2003.

Becky Allen | alfa
Further information:
http://www.britishecologicalsociety.org/

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>