Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hot pepper chemical links tongue to heart

01.09.2003


Discovery of ‘hot pepper’ receptor in heart may explain chest pain, lead to new treatments



The secret to heart attack chest pain may be on the tip of your tongue.
Although they may seem unlikely bedfellows, Penn State College of Medicine researchers found evidence to suggest that the same type of nerve receptors that register the burning sensation from hot peppers in the mouth may cause the sensation of chest pain from a heart attack.

"Our study is the first to demonstrate that the ’hot pepper’ receptor exists on the heart and may be responsible for triggering heart attack chest pain," said Hui-Lin Pan, M.D., Ph.D., professor of anesthesiology, Penn State College of Medicine. "Until now, the capsaicin, or ’hot pepper’ receptor, was only known for sensing heat and pain from the skin. Our data suggest that the ’hot pepper’ receptors could become a new target for treatment of some types of chronic chest pain, such as angina pectoris, that are resistant to other treatments." The study, titled "Cardiac vanilloid receptor 1-expressing afferent nerves and their role in the cardiogenic sympathetic reflex in rats," was published today (Sept. 1) in the Journal of Physiology, accompanied by an editorial article discussing the importance of the study.



A heart attack occurs when the heart isn’t receiving enough oxygen-rich blood because a heart-feeding artery is restricted or blocked. This causes the heart tissue to release chemicals like bradykinin that cause the blood vessels to enlarge, or dilate, in an attempt to increase blood flow to the heart. Those same chemicals are likely responsible for triggering symptoms of heart attack.

Using a rat model, investigators in Pan’s lab first employed immunoflouresence labeling to determine if and where these receptors, called VR1 receptors, are located on the heart. In a subsequent study, they examined whether the sensory nerves containing those receptors are important in triggering the cardiovascular reflex, often associated with the constriction of blood vessels and chest pain.

One group of rats was treated with a capsaicin drug that would specifically bind and deplete the nerve containing the VR1 receptors. Another group, serving as controls, was treated with a placebo, or non-medicated, substance. The ones treated with placebo showed blood pressure and nerve activity increases when capsaicin or bradykinin was applied to the heart. The group that had the nerves "knocked out" saw no increases at all in either blood pressure or nerve activity. (The procedures and protocols were approved by the Animal Care and Use Committee of Penn State College of Medicine.)

These results suggest that active VR1 receptors trigger the cardiovascular and nerve responses of a heart attack, among them, chest pain.

Pan’s findings also suggest an explanation for a clinical condition called silent ischemia, which occurs when people suffer from a heart attack with seemingly no symptoms.

"Chest pain is a warning signal that heart tissue may be damaged," Pan said. "Without this signal, we would not be able to detect the potential danger. We found that the hot pepper receptor is located only on the outermost layer of the heart. So if a person’s heart attack is causing damage only to the inner heart tissue, they may not have the telltale warning sign of chest pain."

Pan’s next step is to draw a definitive connection between the receptors and the triggering of chest pain. To do that, he’ll look for chemicals produced by the heart tissue during a heart attack and how those interact with the receptors.

This research was funded by the National Heart, Lung, and Blood Institute of the National Institutes of Health.

Coauthors on the paper were: Matthew R. Zahner, graduate student, Integrative Biosciences Program, De-Pei Li, postdoctoral fellow, Department of Anesthesia, Shao-Rui Chen, research associate, Department of Anesthesia, Penn State College of Medicine, Penn State Milton S. Hershey Medical Center

Valerie Gliem | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>