Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hot pepper chemical links tongue to heart

01.09.2003


Discovery of ‘hot pepper’ receptor in heart may explain chest pain, lead to new treatments



The secret to heart attack chest pain may be on the tip of your tongue.
Although they may seem unlikely bedfellows, Penn State College of Medicine researchers found evidence to suggest that the same type of nerve receptors that register the burning sensation from hot peppers in the mouth may cause the sensation of chest pain from a heart attack.

"Our study is the first to demonstrate that the ’hot pepper’ receptor exists on the heart and may be responsible for triggering heart attack chest pain," said Hui-Lin Pan, M.D., Ph.D., professor of anesthesiology, Penn State College of Medicine. "Until now, the capsaicin, or ’hot pepper’ receptor, was only known for sensing heat and pain from the skin. Our data suggest that the ’hot pepper’ receptors could become a new target for treatment of some types of chronic chest pain, such as angina pectoris, that are resistant to other treatments." The study, titled "Cardiac vanilloid receptor 1-expressing afferent nerves and their role in the cardiogenic sympathetic reflex in rats," was published today (Sept. 1) in the Journal of Physiology, accompanied by an editorial article discussing the importance of the study.



A heart attack occurs when the heart isn’t receiving enough oxygen-rich blood because a heart-feeding artery is restricted or blocked. This causes the heart tissue to release chemicals like bradykinin that cause the blood vessels to enlarge, or dilate, in an attempt to increase blood flow to the heart. Those same chemicals are likely responsible for triggering symptoms of heart attack.

Using a rat model, investigators in Pan’s lab first employed immunoflouresence labeling to determine if and where these receptors, called VR1 receptors, are located on the heart. In a subsequent study, they examined whether the sensory nerves containing those receptors are important in triggering the cardiovascular reflex, often associated with the constriction of blood vessels and chest pain.

One group of rats was treated with a capsaicin drug that would specifically bind and deplete the nerve containing the VR1 receptors. Another group, serving as controls, was treated with a placebo, or non-medicated, substance. The ones treated with placebo showed blood pressure and nerve activity increases when capsaicin or bradykinin was applied to the heart. The group that had the nerves "knocked out" saw no increases at all in either blood pressure or nerve activity. (The procedures and protocols were approved by the Animal Care and Use Committee of Penn State College of Medicine.)

These results suggest that active VR1 receptors trigger the cardiovascular and nerve responses of a heart attack, among them, chest pain.

Pan’s findings also suggest an explanation for a clinical condition called silent ischemia, which occurs when people suffer from a heart attack with seemingly no symptoms.

"Chest pain is a warning signal that heart tissue may be damaged," Pan said. "Without this signal, we would not be able to detect the potential danger. We found that the hot pepper receptor is located only on the outermost layer of the heart. So if a person’s heart attack is causing damage only to the inner heart tissue, they may not have the telltale warning sign of chest pain."

Pan’s next step is to draw a definitive connection between the receptors and the triggering of chest pain. To do that, he’ll look for chemicals produced by the heart tissue during a heart attack and how those interact with the receptors.

This research was funded by the National Heart, Lung, and Blood Institute of the National Institutes of Health.

Coauthors on the paper were: Matthew R. Zahner, graduate student, Integrative Biosciences Program, De-Pei Li, postdoctoral fellow, Department of Anesthesia, Shao-Rui Chen, research associate, Department of Anesthesia, Penn State College of Medicine, Penn State Milton S. Hershey Medical Center

Valerie Gliem | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>