Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


There are no genes of ageing, but there is a program for it


Probably, animals and human beings possess a biochemical vehicle for measuring life span. The key role in this vehicle is played by a short DNA - chronomere. The chronomeric ageing theory, based on tremendous experimental material, has been developed with support of the Russian Foundation for Basic Research.

Early in the 70s of the 20th century, Russian researcher Alexy Olovnikov forecast existence of the chromosomes’’ end sequences - telomer, which shorten after each cell division. Aa lot of scientists believe now that telomer shortening leads to cell ageing. However, A.M. Olovnikov is convinced that telomer shortening is only the witness of ageing, and special DNA molecules – chronomeres - are responsible for ageing processes. Chronomeres are located in non-dividing cells of the cerebrum. So far, this is only a hypothesis based on the tremendous experimental material collected by Russian and foreign researches within the recent years.

The chronomere – is a copy of a tiny sector of a chromosome’s DNA. Its length makes, apparently, 10 to15 thousand pairs of nucleotides. The chronomere is covered by proteins and lies in a special cavity, like in a nest, between coils of the chromosome which gave birth to it, the chronomere being tied up with the chromosome by chemical bonds. The chronomere contains several genes, from which a special enzyme (RNA-polymerase) prints short RNA molecules. These RNAs interact with certain chromosome’s genes, influence their activity, and, consequently, affect the entire cell’s activity.

Periodically hormonal storms – the hormones bursts following one after another at certain frequency - break the chronomeres’monotonous existence. These bursts last for about ten minutes and they most probably engage the growth hormone and/or insulin-like factor. Calm periods depend on the species the organism belongs to. An adult person may have the “bursts” probably once a month (lunar rhythm) or once in two weeks. At that period, RNA- polymerase rushes along the chronomere extremely fast. Along with that, enormous mechanical stress occurs on the DNA molecule, the stress tearing up the chronomere. While the chronomere restores the break and resumes its position in the chromosome “nest”, other cellular enzymes have time to “eat it up” significantly. Thus, chronomere shortens and gradually loses the genes with the help of which it stimulates the activity of central nervous system cells which, in their turn, direct the activity of the peripheral body cells subordinated to them. Seemingly, different types of cerebral cells have chronomeres different in specificity, and in general, an entire chronomere network exists in the central nervous system. That is why the chronomeres’ shortening leads gradually to wasting away of practically all systems, organs and tissues of a multicellular organism, although this does not happen simultaneously. A large number of indications controlled by chronomeres in the course of the organism development, turn out later to be numerous indications of its ageing. It is no accident that researchers of various vertebrate and invertebrate species accordingly testify that the brain is the leading organ in the organism ageing.

Chronomeres have not been found yet, because nobody looked for them and they are hard to find. Even the Human Genome program has failed to find the small molecules, successions of which are indistinguishable from respective successions of chromosomal DNA. Nevertheless, some data exists which confirms the possibility of chronomeres’ existence. Thus, Uruguayan cytogeneticists have found unusual tiny cavities in chromosomes. Probably, these are the “nests”, from where chronomeres fell out in the course of preparation of microscopical medications.

A.M. Olovnikov is convinced that natural ageing is programmed. Ageing is based not on some ageing genes’ action, but a single universal vehicle - shortening of chronomeres. Each shortening is a click of biological clock, which measures the life span of an animal and duration of its ageing. Proceeding from possible chronomeres’ properties, A.M. Olovnikov suggests several theoretically feasible genetic engineering methods for protecting chronomeres or restoring them after damages. But there is a long way from theoretical “immortality“ through to its practical implementation. First of all, chronimeres should be discovered.

Sergey Komarov | Informnauka
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

New 4-D printer could reshape the world we live in

21.03.2018 | Life Sciences

Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

21.03.2018 | Trade Fair News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>