Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth bioengineers develop humanized yeast

29.08.2003


Bioengineers at Dartmouth have genetically engineered yeast to produce humanized therapeutic proteins to address the manufacturing crunch currently confronting the biopharmaceutical industry. Reported in this week’s issue of Science, the researchers have re-engineered the yeast P. pastoris to secrete a complex human glycoprotein--a process offering significant advantages over current production methods using mammalian cell lines, according to the researchers.

The study, titled "Production of Complex Human Glycoproteins in Yeast," is one result of a collaboration between researchers at Dartmouth’s Thayer School of Engineering and GlycoFi, Inc., a biotech company located in Lebanon, New Hampshire. Founded in the spring of 2000 by Dartmouth engineering professors Tillman Gerngross and Charles Hutchinson, GlycoFi is advancing technology for the production of humanized proteins using fungal-based expression systems.

"For the first time, we have shown that yeast can be used to produce a complex human glycoprotein," says Professor Gerngross. "This technology has the potential to revolutionize the way therapeutic proteins are made--better, cheaper, faster, safer--and offer a level of control over the quality of the end product that has never existed before."



Proteins for pharmaceuticals must be manufactured by living cells. These cells are genetically engineered to produce (or express) proteins that mimic the ones synthesized by humans. These proteins can then be used to treat diseases ranging from cancer and multiple sclerosis to hemophelia and renal disease.

Current production of these therapeutic proteins, however, is limited by capacity due to rapid growth in the discovery of protein-based therapies--to the point that some approved drugs cannot be produced in adequate amounts, and still others are not making it into commercialization due to cost-prohibitive production methods.

"This development is very timely considering the production capacity bottleneck that’s facing today’s biomanufacturing industry," notes Hutchinson, CEO of GlycoFi and Dean Emeritus of Thayer School.

The Dartmouth researchers genetically engineered the yeast P. pastoris to perform a series of sequential reactions (pathways) that mimic the processing of proteins in humans. After eliminating non-human pathways from the yeast, five genes were inserted causing the yeast to construct a new secretion pathway that synthesizes human-like glycoprotein structures of superior quality.

"The protein structures we are seeing in our yeast are of a purity and uniformity unprecedented in biopharmaceutical manufacturing," said Stefan Wildt, Director of Strain Devlopment at GlycoFi, and one of the authors of the paper. "This makes it possible to harness both the inherent advantages of fungal protein expression systems and the potential to significantly increase pharmaceutical production capacities, therefore ultimately improving patient access to life-saving drug therapies."

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu/

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>