Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study provides new insights into emerging theory of gene regulation

29.08.2003


With the full sequence of the human genome now in hand, scientists are turning renewed attention to the molecular processes that regulate the genes encoded by DNA. Estimates are that only a tenth of all genes are expressed at any given time. What controls when and where genes are activated?



Increasingly, researchers believe that the mechanisms that govern gene activity themselves resemble a complicated non-DNA code – an intricate pattern of activity among the molecules that package and control access to the DNA. They suspect that the coordinated interplay of a number of specific enzymes is required to turn on a particular gene.

Now, in a new study using the techniques of structural biology, investigators at The Wistar Institute have shown in detail how two enzymes work together to activate a specific gene by loosening, at that gene’s location, the compact coils of DNA and packaging proteins called chromatin. The findings bolster the emerging theory that something like a code is responsible for orchestrating genetic activity. A report on the research appears in the August issue of Molecular Cell, published August 28.


"This is the first time we’ve understood the precise mechanism of how two specific modifications to the DNA packaging proteins interact synergistically to promote the expression of a particular gene," says Ronen Marmorstein, Ph.D., a professor in the Gene Expression and Regulation Program at Wistar and senior author on the study.

Most of the time, the great majority of genes are silenced, locked away within the packaging proteins of chromatin. For a given gene to be activated when needed, the chromatin must be opened at that gene’s location on the DNA, and that location only, to make the gene physically accessible for transcription. Histone proteins play a key role in this process.

Histones are relatively small proteins around which DNA is coiled to create structures called nucleosomes. Compact strings of nucleosomes, then, form into chromatin, a substructure of chromosomes. When the DNA is tightly wrapped around the histones, the genes cannot be accessed and their expression is repressed. When the coils of DNA around the histones are loosened, the genes become available for expression, and it is the enzymatic activity governing this process in a specific case that Marmorstein’s laboratory was able to illuminate.

Working in yeast, Marmorstein and his colleagues showed that when a kinase enzyme adds a phosphoryl group to a histone molecule at a particular location, it helps a histone acetyltransferase enzyme to add an acetyl group at a second location on the same histone molecule. The acetylation of the histone then is thought to prompt a loosening of the DNA coils around the histone to permit transcription of the gene on that length of DNA.

"Five to ten years ago, most biologists thought that the proteins that package DNA served only to maintain physical order," Marmorstein notes. "It’s becoming clear, however, that these non-DNA elements of chromosomal structure dramatically influence gene expression. Proteins are coming on and off the DNA at specific times and locations to trigger the activation of genes."

The so-called "histone code" theory of gene regulation, advanced by C. David Allis, Ph.D., at the University of Virginia, and others, suggests that complex, interdependent modifications to the histones are responsible for controlling gene activity. The new data from the Wistar research team supports this view.

The two lead authors on the Molecular Cell study are Adrienne Clements, Ph.D., at Wistar, and Arienne N. Poux, at Wistar and the University of Pennsylvania. Wan-Sheng Lo, Ph.D., at Wistar, and Lorraine Pillus, at the University of San California, San Diego, are co-authors. Shelley L. Berger, Ph.D., the Hilary Koprowski Professor in the Gene Expression and Regulation Program at Wistar, was a collaborator and co-author on the study.

An earlier study by Berger and Wistar associate professor Ramin Shiekhattar, Ph.D., published in the August 10, 2001, issue of Science, reported the link between the two chromatin-modifying events, but details concerning the mechanism of action remained to be determined in the current research project.

Primary funding for the research was provided by the National Institutes of Health. Additional support came from the Commonwealth of Pennsylvania and the Leukemia & Lymphoma Society.

The Wistar Institute is an independent nonprofit biomedical research institution dedicated to discovering the causes and cures for major diseases, including cancer, cardiovascular disease, autoimmune disorders, and infectious diseases. Founded in 1892 as the first institution of its kind in the nation, The Wistar Institute today is a National Cancer Institute-designated Cancer Center – one of only eight focused on basic research. Discoveries at Wistar have led to the development of vaccines for such diseases as rabies and rubella, the identification of genes associated with breast, lung, and prostate cancer, and the development of monoclonal antibodies and other significant research technologies and tools.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.upenn.edu/

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>