Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Body Scanners for Lab Animals


A PET (positron emission tomography) scanner sensitive enough to use on laboratory mice has been developed by biomedical engineers at UC Davis. The device is already being used for studies on prostate cancer.

This MicroPET scan of a live rat shows the skeleton.

"We think it’s the highest resolution scanner in existence. We can see things we couldn’t see before," said Simon Cherry, professor of biomedical engineering at UC Davis, who leads the research group.

PET scanners have become widely used in medical imaging, alongside X-rays, CAT scans and magnetic resonance imaging, because they can give information about metabolic activity in body tissues. The machines used for scanning people cannot see sufficiently fine detail for use on small animals such as mice and rats.

The current machine, called MicroPET II, can resolve a volume of about one cubic millimeter, or one microliter, Cherry said. That represents an approximately eight-fold improvement over an earlier device built by Cherry’s laboratory at UCLA, before moving to UC Davis in 2001.

PET works by detecting short-lived radioactive tracers that emit positrons, or anti-electrons. Those tracers can be attached to other molecules that are targeted to particular cells. For example, highly active cells, such as cancer cells, can be tagged with radioactive glucose.

Non-invasive imaging technology such as PET allows researchers to gain more information and to use fewer animals in experimental studies. For example, researchers could use an experimental drug to treat cancer in mice and see if the tumors were shrinking. Without methods such as PET, small deposits of cancer cells are hard to detect in experimental animals.

Cherry presented the work at the annual meeting of the Society for Molecular Imaging in San Francisco, Aug. 15-18. The work has also been published in the journal Physics in Medicine and Biology.

Media contact(s):
Andy Fell, UC Davis News Service, (530) 752-4533,

Andy Fell | UC DAvis
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>