Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Livermore & NIH scientists create technique to examine behavior of proteins at single molecule level

29.08.2003


A Lawrence Livermore National Laboratory physicist, in collaboration with an international team of researchers, has developed an experimental method that allows scientists to investigate the behavior of proteins under non-equilibrium conditions one molecule at a time, to better understand a fundamental biological process of protein folding that is important for many diseases.



The work, presented in the Aug. 29 edition of Science, marks the first time protein-folding kinetics has been monitored on the single-molecule level. Proteins are long chains of amino acids. Like shoelaces, they loop about each other or fold in a variety of ways, and only one way allows the protein to function properly. Just as a knotted shoelace can be a problem, a misfolded protein can do serious damage. Many diseases, such as Alzheimer’s, cystic fibrosis, mad cow disease and many cancers result from misfolded protein.

Livermore’s Lawrence postdoctoral fellow Olgica Bakajin worked with scientists from the NIDDK Laboratory of Chemical Physics at the National Institute of Health and the Physikalische Biochemie Universität Postadam in Germany to develop a microfluidic mixer for studies of protein folding. With this mixer, researchers were able to access information about the protein folding reaction that was never available from ensemble measurements or even from the newer single molecule equilibrium measurements.


"For the first time, in this experiment we were able to look at a protein on a single molecule level at defined times after the folding reaction was initiated," Bakajin said. "With this method we are able to see and isolate intermediate states that under equilibrium conditions only exist for a brief period of time.

"This is a fundamental science project. We would like to understand the sequence of events through which a protein goes from a random coil to its functional ’folded’ form, and we’ve designed an instrument that can help us do this. Now the instrument can be used to study many different proteins so we can come up with some general rules as to how proteins fold."

Understanding of protein folding will contribute to better understanding of the diseases, which in turn will lead to better treatments. Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.berkeley.edu/

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>