Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Livermore & NIH scientists create technique to examine behavior of proteins at single molecule level

29.08.2003


A Lawrence Livermore National Laboratory physicist, in collaboration with an international team of researchers, has developed an experimental method that allows scientists to investigate the behavior of proteins under non-equilibrium conditions one molecule at a time, to better understand a fundamental biological process of protein folding that is important for many diseases.



The work, presented in the Aug. 29 edition of Science, marks the first time protein-folding kinetics has been monitored on the single-molecule level. Proteins are long chains of amino acids. Like shoelaces, they loop about each other or fold in a variety of ways, and only one way allows the protein to function properly. Just as a knotted shoelace can be a problem, a misfolded protein can do serious damage. Many diseases, such as Alzheimer’s, cystic fibrosis, mad cow disease and many cancers result from misfolded protein.

Livermore’s Lawrence postdoctoral fellow Olgica Bakajin worked with scientists from the NIDDK Laboratory of Chemical Physics at the National Institute of Health and the Physikalische Biochemie Universität Postadam in Germany to develop a microfluidic mixer for studies of protein folding. With this mixer, researchers were able to access information about the protein folding reaction that was never available from ensemble measurements or even from the newer single molecule equilibrium measurements.


"For the first time, in this experiment we were able to look at a protein on a single molecule level at defined times after the folding reaction was initiated," Bakajin said. "With this method we are able to see and isolate intermediate states that under equilibrium conditions only exist for a brief period of time.

"This is a fundamental science project. We would like to understand the sequence of events through which a protein goes from a random coil to its functional ’folded’ form, and we’ve designed an instrument that can help us do this. Now the instrument can be used to study many different proteins so we can come up with some general rules as to how proteins fold."

Understanding of protein folding will contribute to better understanding of the diseases, which in turn will lead to better treatments. Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.berkeley.edu/

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>