Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With Neutrons, Partners Pursue The Scent of Success

28.08.2003


Get a whiff of this! A new research partnership at the National Institute of Standards and Technology (NIST) is using beams of chilled neutrons to determine how aroma compounds are embedded into assortments of other chemicals that carry and release fragrances in perfumes, detergents and other scented products.



Securing the elusive structural details could lead to what might be termed an “odor of magnitude” improvement in models for predicting interactions between fragrances and their molecular carriers. The cooperative project involves researchers from International Flavors & Fragrances (IFF), based in New York City, and NIST.

Besides contributing in other ways to product performance, carrier molecules band together and enwrap fragrance ingredients. IFF Associate Research Fellow Chii-Fen Wang likens the structural arrangement to an onion. “We want to determine where the fragrance compound is located in the onion—in the center, for example, or in a particular layer—and how the structure of the compound changes,” she explains.


Detecting how neutrons are scattered as they pass through a sample reveals the locations and shapes of fragrance and carrier molecules over time, information of great interest to Wang and her IFF colleague, Johan Pluyter. The cold (slowed-down) neutrons available at the NIST Center for Neutron Research are ideal probes, says NIST team member Steven Kline. These chilled subatomic particles have wavelengths that will enable the team to measure the structural details that it seeks, which are on the order of 1 nanometer to
100 nanometers.

This basic information, says Wang, can guide efforts to enhance models for formulating carriers that are optimized for specific fragrances and products. With more accurate models, fragrance chemists can, for example, sidestep undesired molecular changes that subvert a desired aroma.

Mark Bello | NIST
Further information:
http://www.nist.gov/public_affairs/techbeat/tb2003_0827.htm#scent

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>