Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With Neutrons, Partners Pursue The Scent of Success

28.08.2003


Get a whiff of this! A new research partnership at the National Institute of Standards and Technology (NIST) is using beams of chilled neutrons to determine how aroma compounds are embedded into assortments of other chemicals that carry and release fragrances in perfumes, detergents and other scented products.



Securing the elusive structural details could lead to what might be termed an “odor of magnitude” improvement in models for predicting interactions between fragrances and their molecular carriers. The cooperative project involves researchers from International Flavors & Fragrances (IFF), based in New York City, and NIST.

Besides contributing in other ways to product performance, carrier molecules band together and enwrap fragrance ingredients. IFF Associate Research Fellow Chii-Fen Wang likens the structural arrangement to an onion. “We want to determine where the fragrance compound is located in the onion—in the center, for example, or in a particular layer—and how the structure of the compound changes,” she explains.


Detecting how neutrons are scattered as they pass through a sample reveals the locations and shapes of fragrance and carrier molecules over time, information of great interest to Wang and her IFF colleague, Johan Pluyter. The cold (slowed-down) neutrons available at the NIST Center for Neutron Research are ideal probes, says NIST team member Steven Kline. These chilled subatomic particles have wavelengths that will enable the team to measure the structural details that it seeks, which are on the order of 1 nanometer to
100 nanometers.

This basic information, says Wang, can guide efforts to enhance models for formulating carriers that are optimized for specific fragrances and products. With more accurate models, fragrance chemists can, for example, sidestep undesired molecular changes that subvert a desired aroma.

Mark Bello | NIST
Further information:
http://www.nist.gov/public_affairs/techbeat/tb2003_0827.htm#scent

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>