Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Chemists Develop Self-Assembling Silicon Particles

26.08.2003


A First Step Toward Robots the Size of a Grain of Sand


Image of smart dust particles surrounding a drop of hydrophobic liquid in water
Credit: Jamie Link, UCSD



Chemists at the University of California, San Diego have developed minute grains of silicon that spontaneously assemble, orient and sense their local environment, a first step toward the development of robots the size of sand grains that could be used in medicine, bioterrorism surveillance and pollution monitoring.

In a paper to be published in September in the Proceedings of the National Academy of Sciences, which will appear in the journal’s early on-line edition this week, Michael Sailor, a professor of chemistry and biochemistry at UCSD, and Jamie Link, a graduate student in his laboratory, report the design and synthesis of tiny silicon chips, or “smart dust,” which consist of two colored mirrors, green on one side and red on the other. Each mirrored surface is modified to find and stick to a desired target, and to adjust its color slightly to let the observer know what it has found.


“This is a key development in what we hope will one day make possible the development of robots the size of a grain of sand,” Sailor explains. “The vision is to build miniature devices that can move with ease through a tiny environment, such as a vein or an artery, to specific targets, then locate and detect chemical or biological compounds and report this information to the outside world. Such devices could be used to monitor the purity of drinking or sea water, to detect hazardous chemical or biological agents in the air or even to locate and destroy tumor cells in the body.”

To create the smart dust, the researchers use chemicals to etch one side of a silicon chip, similar to the chips used in computers, generating a colored mirrored surface with tiny pores. They make this porous surface water repellent, or hydrophobic, by allowing a chemical that is hydrophobic to bind to it. They then etch the other side of the chip to create a porous reflective surface of a different color and expose the surface to air so that it becomes hydrophilic, or attractive to water.

Using vibrations, they can break the chip into tiny pieces, each about the size of the diameter of a human hair. Each piece is now a tiny sensor with opposite surfaces that are different colors, with one attracted to water and one repelled by water and attracted to oily substances.

When added to water, the “dust” will align with the hydrophilic side facing the surface of the water and the hydrophobic side facing toward the air. If a drop of an oily substance is added to the water, the dust surrounds the drop with the hydrophobic side facing inward. In addition to this alignment, which will occur in the presence of any substance that is insoluble in water, a slight color change occurs in the hydrophobic mirror. The degree of this color change depends on the identity of the insoluble substance. The color change occurs as some of the oily liquid enters the tiny pores on the hydrophobic side of the silicon particle.




PNAS

Sailor Research Group

UCSD Department of Chemistry

Prior UCSD Research






“As the particle comes in contact with the oil drop, some of the liquid from the target is absorbed into it,” Sailor explains. “The liquid only wicks into the regions of the particle that have been modified chemically. The presence of the liquid in the pores causes a predictable change in the color code, signaling to the outside observer that the correct target has been located.”

The hydrophilic side of the chip behaves in a similar way; it changes color according to the identity of the hydrophilic liquid it contacts. While each individual particle is too small to observe the color code, the collective behavior of the particles facilitates the detection of the signal.

This research effort, funded by the National Science Foundation and the Air Force Office of Scientific Research, builds on previous work by the Sailor group to develop various types of sensing devices from silicon chips. A year ago, the group reported the development of silicon particles with a single sensing surface.

Link, the first author on the paper, says the dual-sided particles have the additional benefit of being able to collect at a target and then self-assemble into a larger, more visible reflector that can be seen from a distance. “The collective signal from this aggregate of hundreds or thousands of tiny mirrors is much stronger and more easily detected than that from a single mirror,” she points out. “The tendency of these particles to clump together will therefore enable us to use this technology for remote sensing applications.”

Sherry Seethaler | UCSD
Further information:
http://ucsdnews.ucsd.edu/newsrel/science/smartdust.htm

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>