Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UGA research team reveals molecular key to cell division


Anyone who made it to high school biology has learned about mitosis, or cell division. One cell divides into two, two into four and so forth in a process designed to pass on exact copies of the DNA in chromosomes to daughter cells. New research, by a University of Georgia team, shows how the genes that control this process are regulated.

The study is important for cancer research because the regulation of cell division goes awry in tumors and normal cell growth and behavior are lost. Understanding how normal cell division is regulated will allow scientists to identify potential targets for cancer therapeutics, said Stephen Dalton, the molecular geneticist who led the UGA team.

"This is fundamental molecular cancer research," Dalton said. "One major problem in cancer is mis-segregation, [when the cell’s] ability to equally divide chromosomes is lost. One [daughter] cell might get too much genetic information and the other too little.

"This is why many tumors have unbalanced genetic makeup," he said. " The cells lose the ability to accurately segregate their chromosomes because control mechanisms, known as checkpoint controls, are lost."

Dalton worked with Bruce Kemp, deputy director of St. Vincent’s Institute for Medical Research in Melbourne, Australia and UGA graduate student Cameron McLean.

Using Brewer’s yeast (Saccharomyces cerevisiae) as their model system, the group found that molecules called cyclin-dependent kinases drive the mitosis process. More than 30 genes are switched on at the beginning of the process and switched off after chromosome segregation is complete.

"The yeast is easily manipulated genetically," Dalton said. "And because the mechanisms of cell division are conserved between yeast and humans, the observations we make in yeast, in general, are applicable to humans."

Now, Dalton and his team have turned their attention from yeast to human cells. They are focusing primarily on a group of molecules that have been implicated in many tumors. Collectively, these genes are known as oncogenes and tumor suppressor genes.

"Our work is now focusing on how some of these initial observations in yeast can be applied to understanding molecular control of cell division in human cells," Dalton said, "and how that can be applied to understanding cancer."

The researchers have already made some novel observations about how the cyclin-dependent protein kinases function in human cells. Their findings will be published soon in a separate report.

"We’ve identified some new mechanisms by which oncogenes and tumor suppressor genes are controlled," Dalton said. "Over the next year, I think we’ll get a clear idea of new roles these molecules play in early cell development and then try to fit the pieces together to see how they may influence cell behavior in the context of cancer.

"We’ve made some observations which fly in the face of the [scientific] literature," he said. "It’s going to be quite controversial but very exciting. It’s going to have some strong implications for the role these molecules play in cancer development."

The paper outlining the initial research with yeast was published in the July 15 issue of Genes and Development.

A geneticist of international renown, Dalton joined the faculty of the UGA College of Agricultural and Environmental Sciences in January. He is a Georgia Research Alliance Eminent Scholar, a Georgia Cancer Coalition Distinguished Cancer Scientists and a consultant for BresaGen, a cell therapy biotech company in Athens.

Kim Carlyle | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>