Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UGA research team reveals molecular key to cell division

25.08.2003


Anyone who made it to high school biology has learned about mitosis, or cell division. One cell divides into two, two into four and so forth in a process designed to pass on exact copies of the DNA in chromosomes to daughter cells. New research, by a University of Georgia team, shows how the genes that control this process are regulated.



The study is important for cancer research because the regulation of cell division goes awry in tumors and normal cell growth and behavior are lost. Understanding how normal cell division is regulated will allow scientists to identify potential targets for cancer therapeutics, said Stephen Dalton, the molecular geneticist who led the UGA team.

"This is fundamental molecular cancer research," Dalton said. "One major problem in cancer is mis-segregation, [when the cell’s] ability to equally divide chromosomes is lost. One [daughter] cell might get too much genetic information and the other too little.


"This is why many tumors have unbalanced genetic makeup," he said. " The cells lose the ability to accurately segregate their chromosomes because control mechanisms, known as checkpoint controls, are lost."

Dalton worked with Bruce Kemp, deputy director of St. Vincent’s Institute for Medical Research in Melbourne, Australia and UGA graduate student Cameron McLean.

Using Brewer’s yeast (Saccharomyces cerevisiae) as their model system, the group found that molecules called cyclin-dependent kinases drive the mitosis process. More than 30 genes are switched on at the beginning of the process and switched off after chromosome segregation is complete.

"The yeast is easily manipulated genetically," Dalton said. "And because the mechanisms of cell division are conserved between yeast and humans, the observations we make in yeast, in general, are applicable to humans."

Now, Dalton and his team have turned their attention from yeast to human cells. They are focusing primarily on a group of molecules that have been implicated in many tumors. Collectively, these genes are known as oncogenes and tumor suppressor genes.

"Our work is now focusing on how some of these initial observations in yeast can be applied to understanding molecular control of cell division in human cells," Dalton said, "and how that can be applied to understanding cancer."

The researchers have already made some novel observations about how the cyclin-dependent protein kinases function in human cells. Their findings will be published soon in a separate report.

"We’ve identified some new mechanisms by which oncogenes and tumor suppressor genes are controlled," Dalton said. "Over the next year, I think we’ll get a clear idea of new roles these molecules play in early cell development and then try to fit the pieces together to see how they may influence cell behavior in the context of cancer.

"We’ve made some observations which fly in the face of the [scientific] literature," he said. "It’s going to be quite controversial but very exciting. It’s going to have some strong implications for the role these molecules play in cancer development."

The paper outlining the initial research with yeast was published in the July 15 issue of Genes and Development.

A geneticist of international renown, Dalton joined the faculty of the UGA College of Agricultural and Environmental Sciences in January. He is a Georgia Research Alliance Eminent Scholar, a Georgia Cancer Coalition Distinguished Cancer Scientists and a consultant for BresaGen, a cell therapy biotech company in Athens.

Kim Carlyle | EurekAlert!
Further information:
http://www.uga.edu/

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>