Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UGA research team reveals molecular key to cell division

25.08.2003


Anyone who made it to high school biology has learned about mitosis, or cell division. One cell divides into two, two into four and so forth in a process designed to pass on exact copies of the DNA in chromosomes to daughter cells. New research, by a University of Georgia team, shows how the genes that control this process are regulated.



The study is important for cancer research because the regulation of cell division goes awry in tumors and normal cell growth and behavior are lost. Understanding how normal cell division is regulated will allow scientists to identify potential targets for cancer therapeutics, said Stephen Dalton, the molecular geneticist who led the UGA team.

"This is fundamental molecular cancer research," Dalton said. "One major problem in cancer is mis-segregation, [when the cell’s] ability to equally divide chromosomes is lost. One [daughter] cell might get too much genetic information and the other too little.


"This is why many tumors have unbalanced genetic makeup," he said. " The cells lose the ability to accurately segregate their chromosomes because control mechanisms, known as checkpoint controls, are lost."

Dalton worked with Bruce Kemp, deputy director of St. Vincent’s Institute for Medical Research in Melbourne, Australia and UGA graduate student Cameron McLean.

Using Brewer’s yeast (Saccharomyces cerevisiae) as their model system, the group found that molecules called cyclin-dependent kinases drive the mitosis process. More than 30 genes are switched on at the beginning of the process and switched off after chromosome segregation is complete.

"The yeast is easily manipulated genetically," Dalton said. "And because the mechanisms of cell division are conserved between yeast and humans, the observations we make in yeast, in general, are applicable to humans."

Now, Dalton and his team have turned their attention from yeast to human cells. They are focusing primarily on a group of molecules that have been implicated in many tumors. Collectively, these genes are known as oncogenes and tumor suppressor genes.

"Our work is now focusing on how some of these initial observations in yeast can be applied to understanding molecular control of cell division in human cells," Dalton said, "and how that can be applied to understanding cancer."

The researchers have already made some novel observations about how the cyclin-dependent protein kinases function in human cells. Their findings will be published soon in a separate report.

"We’ve identified some new mechanisms by which oncogenes and tumor suppressor genes are controlled," Dalton said. "Over the next year, I think we’ll get a clear idea of new roles these molecules play in early cell development and then try to fit the pieces together to see how they may influence cell behavior in the context of cancer.

"We’ve made some observations which fly in the face of the [scientific] literature," he said. "It’s going to be quite controversial but very exciting. It’s going to have some strong implications for the role these molecules play in cancer development."

The paper outlining the initial research with yeast was published in the July 15 issue of Genes and Development.

A geneticist of international renown, Dalton joined the faculty of the UGA College of Agricultural and Environmental Sciences in January. He is a Georgia Research Alliance Eminent Scholar, a Georgia Cancer Coalition Distinguished Cancer Scientists and a consultant for BresaGen, a cell therapy biotech company in Athens.

Kim Carlyle | EurekAlert!
Further information:
http://www.uga.edu/

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>