Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UGA research team reveals molecular key to cell division

25.08.2003


Anyone who made it to high school biology has learned about mitosis, or cell division. One cell divides into two, two into four and so forth in a process designed to pass on exact copies of the DNA in chromosomes to daughter cells. New research, by a University of Georgia team, shows how the genes that control this process are regulated.



The study is important for cancer research because the regulation of cell division goes awry in tumors and normal cell growth and behavior are lost. Understanding how normal cell division is regulated will allow scientists to identify potential targets for cancer therapeutics, said Stephen Dalton, the molecular geneticist who led the UGA team.

"This is fundamental molecular cancer research," Dalton said. "One major problem in cancer is mis-segregation, [when the cell’s] ability to equally divide chromosomes is lost. One [daughter] cell might get too much genetic information and the other too little.


"This is why many tumors have unbalanced genetic makeup," he said. " The cells lose the ability to accurately segregate their chromosomes because control mechanisms, known as checkpoint controls, are lost."

Dalton worked with Bruce Kemp, deputy director of St. Vincent’s Institute for Medical Research in Melbourne, Australia and UGA graduate student Cameron McLean.

Using Brewer’s yeast (Saccharomyces cerevisiae) as their model system, the group found that molecules called cyclin-dependent kinases drive the mitosis process. More than 30 genes are switched on at the beginning of the process and switched off after chromosome segregation is complete.

"The yeast is easily manipulated genetically," Dalton said. "And because the mechanisms of cell division are conserved between yeast and humans, the observations we make in yeast, in general, are applicable to humans."

Now, Dalton and his team have turned their attention from yeast to human cells. They are focusing primarily on a group of molecules that have been implicated in many tumors. Collectively, these genes are known as oncogenes and tumor suppressor genes.

"Our work is now focusing on how some of these initial observations in yeast can be applied to understanding molecular control of cell division in human cells," Dalton said, "and how that can be applied to understanding cancer."

The researchers have already made some novel observations about how the cyclin-dependent protein kinases function in human cells. Their findings will be published soon in a separate report.

"We’ve identified some new mechanisms by which oncogenes and tumor suppressor genes are controlled," Dalton said. "Over the next year, I think we’ll get a clear idea of new roles these molecules play in early cell development and then try to fit the pieces together to see how they may influence cell behavior in the context of cancer.

"We’ve made some observations which fly in the face of the [scientific] literature," he said. "It’s going to be quite controversial but very exciting. It’s going to have some strong implications for the role these molecules play in cancer development."

The paper outlining the initial research with yeast was published in the July 15 issue of Genes and Development.

A geneticist of international renown, Dalton joined the faculty of the UGA College of Agricultural and Environmental Sciences in January. He is a Georgia Research Alliance Eminent Scholar, a Georgia Cancer Coalition Distinguished Cancer Scientists and a consultant for BresaGen, a cell therapy biotech company in Athens.

Kim Carlyle | EurekAlert!
Further information:
http://www.uga.edu/

More articles from Life Sciences:

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Heavy nitrogen molecules reveal planetary-scale tug-of-war

20.11.2017 | Earth Sciences

Taking a spin on plasma space tornadoes with NASA observations

20.11.2017 | Physics and Astronomy

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>