Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists identify new sperm protein required for fertilization


In the United States, nearly 2.6 million couples have been treated for infertility with about 40 percent of those cases thought to be due to male infertility. Now, a study published in the August 22 issue of Cell identifies a new protein that is required for a sperm to bind to an egg during the process of fertilization. This research provides important new insight into the molecular mechanisms that are involved in the initial events of sperm-egg association and may shed light on what underlies some instances of male infertility.

There are a variety of factors that can lead to male infertility, including defects in sperm motility and insufficient sperm production. However, in many cases, the sperm of infertile men appear to be completely normal. Barry D. Shur, PhD, professor and chair of cell biology at Emory University School of Medicine, and postdoctoral fellow Michael A. Ensslin, PhD, took a close look at the specific molecules and events required for a sperm to recognize an egg so that fertilization can take place. The researchers identified a protein on the surface of mouse sperm that is required for the sperm to successfully bind to the outside of the egg. The protein, called SED1, binds specifically to unfertilized eggs and no longer recognizes an egg after it has been fertilized. When examined in the laboratory, sperm without SED1 were unable to bind to an egg. Further, mice without SED1 had greatly reduced fertility even though the sperm appeared normal in number and motility.

These results strongly suggest that SED1 plays a critical role in the initial association between sperm and egg. "An understanding of the molecular mechanisms underlying sperm-egg binding may give insight into the basis for at least some percentage of male infertility," explains Dr. Shur. "In addition, this work is of interest because the composition of SED1 is similar to other types of cell-cell binding proteins, which have not previously been implicated in sperm-egg binding."

Holly Korschun | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Development and Fast Analysis of 3D Printed HF Components

19.03.2018 | Trade Fair News

In monogamous species, a compatible partner is more important than an ornamented one

19.03.2018 | Life Sciences

Signaling Pathways to the Nucleus

19.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>