Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify new sperm protein required for fertilization

22.08.2003


In the United States, nearly 2.6 million couples have been treated for infertility with about 40 percent of those cases thought to be due to male infertility. Now, a study published in the August 22 issue of Cell identifies a new protein that is required for a sperm to bind to an egg during the process of fertilization. This research provides important new insight into the molecular mechanisms that are involved in the initial events of sperm-egg association and may shed light on what underlies some instances of male infertility.



There are a variety of factors that can lead to male infertility, including defects in sperm motility and insufficient sperm production. However, in many cases, the sperm of infertile men appear to be completely normal. Barry D. Shur, PhD, professor and chair of cell biology at Emory University School of Medicine, and postdoctoral fellow Michael A. Ensslin, PhD, took a close look at the specific molecules and events required for a sperm to recognize an egg so that fertilization can take place. The researchers identified a protein on the surface of mouse sperm that is required for the sperm to successfully bind to the outside of the egg. The protein, called SED1, binds specifically to unfertilized eggs and no longer recognizes an egg after it has been fertilized. When examined in the laboratory, sperm without SED1 were unable to bind to an egg. Further, mice without SED1 had greatly reduced fertility even though the sperm appeared normal in number and motility.

These results strongly suggest that SED1 plays a critical role in the initial association between sperm and egg. "An understanding of the molecular mechanisms underlying sperm-egg binding may give insight into the basis for at least some percentage of male infertility," explains Dr. Shur. "In addition, this work is of interest because the composition of SED1 is similar to other types of cell-cell binding proteins, which have not previously been implicated in sperm-egg binding."


Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>