Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Honeybee gene find ends 150-year search

22.08.2003


The genetic signal that makes a honeybee male or female has been identified by researchers in Germany, the U.S. and Norway. The finding, published in the August 22 issue of the journal Cell, shows how male bees can have no father, a scientific puzzle going back over 150 years and the explanation for why bees, ants and wasps often form colonial societies. It could also make it easier to breed honeybees.



The researchers found that female bees have two different versions of a gene called csd, one from each parent, that form an active protein that triggers female development. Unfertilized eggs, which have only one copy of csd from the mother, default to being males.

In 1845, a Polish parish priest called Johann Dzierzon proposed that male bees have no fathers: They develop from unfertilized eggs, while females grow from fertilized eggs. Later work showed that Dzierzon was right. Male bees have half as many genes (haploid) as females, which get a set of genes from each parent (diploid). About one-fifth of animal species including all ants, bees and wasps use a similar haplodiploid system of sex determination, but the actual genes and mechanisms involved are not well understood.


Martin Beye and Martin Hasselmann from the Martin Luther University of Halle/Wittenberg, Germany, and Robert Page and Kim Fondrk at the University of California, Davis, isolated a honeybee gene called complementary sex determiner, or csd. Csd exists in 19 alternative versions, or alleles, Page said. Female bees have two copies of csd which are always different alleles. Males have only one copy.

The researchers worked out the DNA sequence of four csd alleles and found that they were highly variable. But the same alleles were found in both males and females, showing that there are no alleles for "maleness" or "femaleness."

Studies on developing eggs showed that in both males and females, the csd gene becomes active about 12 hours after eggs are laid and remains active throughout development. In collaboration with Stig Omholt of the Agricultural University of Norway, the researchers used RNA interference to block activity of the csd gene. Female eggs developed into insects with male gonads. The same treatment had no effect on male eggs.

The scientists think that the proteins made by the two different versions of csd in a female pair up to form a single unit which acts on the next step in sex determination, probably by affecting the expression of other genes. If only one type of csd is made, no active protein is formed and the bee grows into a male.

"The csd gene is the major invention that enabled the evolution of the ants, bees and wasps and their complex societies by enabling the evolution of haplodiploidy," Page said. Because males have just one set of genes, sisters that work together in the nest share more genes in common with each other than they would with their own sons and daughters.

But this also has a downside for bee breeders. When bees are inbred to select desired traits, fertilized eggs with two copies of the same csd allele can occur. These eggs develop into sterile diploid males. Worker bees find and kill these sterile males as larvae. That means that inbred honeybee colonies quickly die out.

"This problem has haunted bee breeding since the 1940s. As we understand more, there will be ways to get around this problem," Page said. Beekeepers could set up matings with bees of different csd type, or find ways to manipulate the gene to get viable crosses.

Breeding bees is hard enough already. Wild bees mate only once, in flight to their new nest. In the 19th century, Gregor Mendel, who discovered the principles of inheritance in pea plants, also tried to breed bees without success. In the 1940s, Harry H. Laidlaw, Jr. now a professor emeritus of entomology at UC Davis, and others pioneered methods for artificial insemination of bees, allowing selective breeding for the first time. But attempts to create long-lived inbred strains generally failed.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu/

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>