Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes that paint fly derrieres hint at convergence

21.08.2003


Nicolas Gompel, postdoctoral fellow in molecular biology, uses a sweeping net to catch fruit flies in the University Housing community garden. Gompel researches the genes that drive differences in pigmentation in fruit flies (genus Drosophila), using flies caught in his apartment and around the University Housing community garden compost heap.
Photo by: Michael Forster Rothbart


This male fruit fly (Zaprionus vittiger) devoid of abdominal pigments illustrates the morphological diversity of abdominal pigmentation in Drosophilidae. Nicolas Gompel, postdoctoral fellow in molecular biology, researched the genes that drive differences in pigmentation in fruit flies (genus Drosophila), using this fly from a species stock center and other flies caught at his University Housing apartment and at the University Housing community garden compost heap.

Photo by: Nicolas Gompel


How vastly different animals arrive at the same body plan or pattern of ornamentation has long been a conundrum of developmental biology.

But now, thanks to the colorful derriere of a wild fruit fly, captured on a compost heap by a University of Wisconsin-Madison post-doctoral student, scientists have been able to document a rare example of molecular convergence, the process by which different animals use the same genes to repeatedly invent similar body patterns and structures.

Writing in the current issue (Aug. 21) of the journal Nature, a group led by Sean Carroll and Nicolas Gompel of the Howard Hughes Medical Institute (HHMI) at UW-Madison, describes the genetic mechanisms that control the colors and patterns on fruit fly abdomens. The study suggests that the simple modulation of a transcription factor, a protein that can bind to DNA and influence its activity, may be responsible for governing the diversity of body color patterns among related animal species.



"At the visual level, evolution repeats itself," Carroll explains. "Insects evolved wings. Birds evolved wings. Bats evolved wings. The question we are asking is - in related animals like insects, for example - did they arrive at these body plans or decorations in the same way?"

Conveniently, the answer was found with the help of a wild fruit fly, captured by Gompel, a post-doctoral fellow. Pursuing his hobby of collecting and systematizing insects near a wooded tract close to Eagle Heights, a housing complex for UW-Madison students and their families, Gompel captured a wild fruit fly that looked very much like the species Drosophila melanogaster, the workhorse of many modern genetics laboratories.

"I found a Drosophila with a pattern of pigmentation similar to melanogaster, though this species was obviously very distant," Gompel explains. "I bred it and studied it, and found that the genetics underlying its pigment pattern was similar to melanogaster."

By comparing the molecular workings of the captured fly, and other fly species snared or otherwise acquired by Gompel, the Wisconsin group was able to find genetic commonalities across 13 species covering the various branches of the fruit fly family.

They found that a common gene known as ’Bric-a-brac2’ is selectively influenced - tweaked by transcription factors - to produce a wide range of pattern and color pigmentation on the abdomens of fruit flies across many species.

The discovery of this example of molecular convergence, according to Carroll and Gompel, provides biologists with new insight into how genes that are shared by many animals can be used in different ways to influence body plans.

"We wanted to know, are these things crossing the same bridge to get to a desired destination," Carroll explains. "The answer, we found, was yes and no. There are other ways across the river. "

In some instances, Carroll and Gompel found that the genetic mechanism or bridge to influence the gene was blocked. "It was not open for business in some of these groups," Carroll says. "But what we learned was that similar (body) patterns can evolve in both as animals use the same path or a different route" to the same end.

A related mechanism may be at work in the familiar ladybird beetle, Carroll suggests, as it is known that one can get "boatloads of different patterns using the same genes. In that case, diversity is accomplished through the same mechanism.

"You can take one (genetic) player, tinker with it and get all these different patterns," he says. "But you can still get similar patterns without touching the same brush," he says.

Diversity is a key point, says Gompel, because it is an important aspect of natural history, and its evolutionary and developmental bases are not well understood by biologists.

"If you look at other animals - cats, for instance - you’ll see a very broad range of color patterns that are just different overlays on the same body plan. You can extend this overlay rule to land snails, king snakes, hummingbirds, butterflies and so on," he says.

Because the patterns are complex and their range is extensive, it is often assumed that the genetics that underpin them are complex. But the Wisconsin study, Gompel says, suggests that the molecular basis for such diversity can be narrowed down to a reasonably simple genetic game plan.

"We’ve looked at fly species that are in the same range of morphological divergence as the house cat, the leopard, the cheetah and the panther," he says.

In that context, Gompel says, it demonstrates how a few genes, influenced in subtle ways, can control body decoration, coloring and patterning across the animal kingdom.


Terry Devitt 608-262-8282, trdevitt@facstaff.wisc.edu

CONTACT: Nicolas Gompel 608-262-7898, ngompel@wisc.edu;
Sean Carroll 608-262-6191, sbcarrol@wisc.edu

Terry Devitt | EurekAlert!
Further information:
http://www.news.wisc.edu/newsphotos/gompel.html

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>