Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes that paint fly derrieres hint at convergence

21.08.2003


Nicolas Gompel, postdoctoral fellow in molecular biology, uses a sweeping net to catch fruit flies in the University Housing community garden. Gompel researches the genes that drive differences in pigmentation in fruit flies (genus Drosophila), using flies caught in his apartment and around the University Housing community garden compost heap.
Photo by: Michael Forster Rothbart


This male fruit fly (Zaprionus vittiger) devoid of abdominal pigments illustrates the morphological diversity of abdominal pigmentation in Drosophilidae. Nicolas Gompel, postdoctoral fellow in molecular biology, researched the genes that drive differences in pigmentation in fruit flies (genus Drosophila), using this fly from a species stock center and other flies caught at his University Housing apartment and at the University Housing community garden compost heap.

Photo by: Nicolas Gompel


How vastly different animals arrive at the same body plan or pattern of ornamentation has long been a conundrum of developmental biology.

But now, thanks to the colorful derriere of a wild fruit fly, captured on a compost heap by a University of Wisconsin-Madison post-doctoral student, scientists have been able to document a rare example of molecular convergence, the process by which different animals use the same genes to repeatedly invent similar body patterns and structures.

Writing in the current issue (Aug. 21) of the journal Nature, a group led by Sean Carroll and Nicolas Gompel of the Howard Hughes Medical Institute (HHMI) at UW-Madison, describes the genetic mechanisms that control the colors and patterns on fruit fly abdomens. The study suggests that the simple modulation of a transcription factor, a protein that can bind to DNA and influence its activity, may be responsible for governing the diversity of body color patterns among related animal species.



"At the visual level, evolution repeats itself," Carroll explains. "Insects evolved wings. Birds evolved wings. Bats evolved wings. The question we are asking is - in related animals like insects, for example - did they arrive at these body plans or decorations in the same way?"

Conveniently, the answer was found with the help of a wild fruit fly, captured by Gompel, a post-doctoral fellow. Pursuing his hobby of collecting and systematizing insects near a wooded tract close to Eagle Heights, a housing complex for UW-Madison students and their families, Gompel captured a wild fruit fly that looked very much like the species Drosophila melanogaster, the workhorse of many modern genetics laboratories.

"I found a Drosophila with a pattern of pigmentation similar to melanogaster, though this species was obviously very distant," Gompel explains. "I bred it and studied it, and found that the genetics underlying its pigment pattern was similar to melanogaster."

By comparing the molecular workings of the captured fly, and other fly species snared or otherwise acquired by Gompel, the Wisconsin group was able to find genetic commonalities across 13 species covering the various branches of the fruit fly family.

They found that a common gene known as ’Bric-a-brac2’ is selectively influenced - tweaked by transcription factors - to produce a wide range of pattern and color pigmentation on the abdomens of fruit flies across many species.

The discovery of this example of molecular convergence, according to Carroll and Gompel, provides biologists with new insight into how genes that are shared by many animals can be used in different ways to influence body plans.

"We wanted to know, are these things crossing the same bridge to get to a desired destination," Carroll explains. "The answer, we found, was yes and no. There are other ways across the river. "

In some instances, Carroll and Gompel found that the genetic mechanism or bridge to influence the gene was blocked. "It was not open for business in some of these groups," Carroll says. "But what we learned was that similar (body) patterns can evolve in both as animals use the same path or a different route" to the same end.

A related mechanism may be at work in the familiar ladybird beetle, Carroll suggests, as it is known that one can get "boatloads of different patterns using the same genes. In that case, diversity is accomplished through the same mechanism.

"You can take one (genetic) player, tinker with it and get all these different patterns," he says. "But you can still get similar patterns without touching the same brush," he says.

Diversity is a key point, says Gompel, because it is an important aspect of natural history, and its evolutionary and developmental bases are not well understood by biologists.

"If you look at other animals - cats, for instance - you’ll see a very broad range of color patterns that are just different overlays on the same body plan. You can extend this overlay rule to land snails, king snakes, hummingbirds, butterflies and so on," he says.

Because the patterns are complex and their range is extensive, it is often assumed that the genetics that underpin them are complex. But the Wisconsin study, Gompel says, suggests that the molecular basis for such diversity can be narrowed down to a reasonably simple genetic game plan.

"We’ve looked at fly species that are in the same range of morphological divergence as the house cat, the leopard, the cheetah and the panther," he says.

In that context, Gompel says, it demonstrates how a few genes, influenced in subtle ways, can control body decoration, coloring and patterning across the animal kingdom.


Terry Devitt 608-262-8282, trdevitt@facstaff.wisc.edu

CONTACT: Nicolas Gompel 608-262-7898, ngompel@wisc.edu;
Sean Carroll 608-262-6191, sbcarrol@wisc.edu

Terry Devitt | EurekAlert!
Further information:
http://www.news.wisc.edu/newsphotos/gompel.html

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>