Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’MicroRNAs’ control plant shape and structure

21.08.2003


New discoveries about tiny genetic components called microRNAs explain why plant leaves are flat.



The study may be a first step, researchers say, in revolutionizing our understanding of how plants control their morphology, or shape. A plant’s ability to grow structures with a specific shape is critical to its normal function of capturing energy from the sun and producing products like grain and fiber.

As such, these findings could ultimately have profound implications for advances in agriculture.


The research was published online today in Nature, a scientific journal, by scientists from Oregon State University, the Max Planck Institute in Germany and the Salk Institute in California.

Understanding the genetic basis of plant shape is just one of the first outgrowths of research done with microRNAs, tiny bits of genetic material with powerful abilities to control gene "expression." Careful regulation of large sets of genes allows plants to specify which cells turn into leaf, root or other types of cells.

MicroRNAs work like a digital radar system to hone in on target genes. The target gene messenger RNA, which is the critical molecule that communicates normal gene functions, is either destroyed or inactivated through molecular processes that are directed by the microRNA. It is this type of negative regulation, or turning off expression of specific genes, that triggers development of plant parts with the proper shape.

"In this study we’ve demonstrated the real life consequences of a microRNA, showing how regulated destruction of a set of messenger RNA targets controls the shape of a plant’s leaf," said James Carrington, professor and director of the Center for Gene Research and Biotechnology at OSU.

Collaborative research teams led by Detlef Weigel at the Max Planck Institute and Salk Institute, and Carrington at OSU, identified a microRNA they called "JAW," and five specific "TCP" target genes that collectively control cellular division in plant leaves and other organs. The work was done using Arabidopsis, a small leafy plant in the mustard family.

They showed that, to make a flat leaf, microRNAs need to target and destroy the TCP target genes at the right time and at the right place in the plant as it develops. If Arabidopsis makes too much microRNA JAW, then leaves are crinkled and wrinkly. This is because too much microRNA overloads the normal balance of TCP gene expression, which then causes too much cell division in growing leaves. The result is too many cells to crowd into a relatively flat space.

"Think about trying to lay a carpet in a room that is too small," Carrington said. "The only way to fit it all in is to introduce bulges and ripples. This is what happens when microRNA JAW does not properly regulate the TCP genes. There are too many cells that are forced into the leaf plane, resulting in the introduction of improper curvature."

"This is among the first demonstrations that microRNAs control a specific developmental process, and the work opens the possibility of an entirely new layer of controlling plant morphogenesis," said Weigel.

According to the researchers, the "flatness" of a plant leaf is of considerable biological importance.

"Plants evolved flat leaves for important functional reasons," Carrington said. "A flat surface captures more light and energy from the sun. Plants also have cells on their top surfaces that are specially designed for that purpose. On the underside, leaves are more specialized for gas exchange. The whole process is remarkably efficient, and that is due in part to formation of leaves with the proper shape."

As more and more microRNAs are discovered and their role in plant growth and development becomes clear, the entire process of genetic manipulation of plants for useful purposes may become far more precise and vast new opportunities may open up to produce more efficient or productive plants.

"We will probably discover microRNAs that function in most aspects of plant growth and development, including flowering, root structure and seed production," Carrington said. "The potential impacts of this could be quite large."


###
By David Stauth, 541-737-0787
SOURCES: James Carrington, 541-737-3347
Detlef Weigel, 49-7071-601-1411


James Carrington | EurekAlert!
Further information:
http://www.orst.edu/

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>