Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salk News: Social behavior genes

21.08.2003


Are there ’social behavior’ genes?



A rare genetic disorder may lead scientists to genes for social behavior, a Salk Institute study has found.

The study zeros in on the genes that may lead to the marked extroverted behavior seen in children with Williams syndrome, demonstrating that "hyper-sociability" – especially the drive to greet and interact with strangers -- follows a unique developmental path.


The path is not only different from typical children but also from children with other developmental disorders of the nervous system. The study appears in the online version of the American Journal of Medical Genetics.

Teresa Doyle and Ursula Bellugi of the Salk Institute, along with Julie Korenberg and John Graham of UCLA and Cedars-Sinai Medical Center, Los Angeles, found that children with Williams syndrome scored significantly higher on tests measuring behavior in social situations, including their ability to remember names and faces, eagerness to please others, empathy with others’ emotions and tendency to approach strangers.

The authors also performed genetic screening on a young girl to look for genetic underpinnings of this pronounced social behavior.

"We’ve known for many years that children with Williams syndrome are markedly more social than other children, in spite of the moderate mental retardation and physical problems that also are associated with the disorder," said Doyle. "Here we not only have shown hyper-social behavior as a hallmark symptom that follows a characteristic developmental course in Williams syndrome, but we may be closer to identifying the genes involved in regulating that behavior."

Williams syndrome is rare, occurring in only one in every 20,000 people. It arises from the deletion of no more than 20 genes from one chromosome of the seventh chromosome pair.

Virtually everyone with Williams syndrome has exactly the same set of genes missing. People with the disorder have characteristic facial and physical features, certain cardiovascular problems and mild to moderate mental retardation.

However, in addition to their very extroverted natures, as adults Williams patients also possess unusually adept language skills given their level of general cognitive abilities. Bellugi and her laboratory have been studying the syndrome for years in an effort to understand how language is processed in the brain and what genes may be involved.

Very rarely, an individual with Williams syndrome has a slightly smaller or larger gene deletion than is typical for the syndrome. The researchers analyzed the genetic deletion of a two-year-old girl with Williams syndrome who did not exhibit this especially outgoing behavior.

She was shy around strangers, and scored significantly lower on sociability measures, much more resembling 2-year-old children without Williams syndrome. It was found that this girl retained at least one gene that most people with the disorder have missing. This indicated that the gene (or genes) she retained might be altering the hyper-sociability usually observed among children with Williams syndrome.

"We don’t know at this point whether these genes are involved in regulating social behavior in the general population, or whether their involvement is specific to Williams syndrome," said Bellugi. "We will need to conduct tests in more patients who do not have all the gene deletions seen in typical Williams syndrome, and compare and contrast genetics and behavior."


The research was supported by grants from the National Institutes of Health, the James S. McDonnell Foundation, the Oak Tree Philanthropic Foundation, and the U.S. Department of Energy.

The Salk Institute for Biological Studies, located in La Jolla, Calif., is an independent nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health and conditions, and the training of future generations of researchers. Jonas Salk, M.D., founded the institute in 1960 with a gift of land from the City of San Diego and the financial support of the March of Dimes Birth Defects Foundation.

Andrew Porterfield | EurekAlert!
Further information:
http://www.salk.edu/

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>