Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Salk News: Social behavior genes


Are there ’social behavior’ genes?

A rare genetic disorder may lead scientists to genes for social behavior, a Salk Institute study has found.

The study zeros in on the genes that may lead to the marked extroverted behavior seen in children with Williams syndrome, demonstrating that "hyper-sociability" – especially the drive to greet and interact with strangers -- follows a unique developmental path.

The path is not only different from typical children but also from children with other developmental disorders of the nervous system. The study appears in the online version of the American Journal of Medical Genetics.

Teresa Doyle and Ursula Bellugi of the Salk Institute, along with Julie Korenberg and John Graham of UCLA and Cedars-Sinai Medical Center, Los Angeles, found that children with Williams syndrome scored significantly higher on tests measuring behavior in social situations, including their ability to remember names and faces, eagerness to please others, empathy with others’ emotions and tendency to approach strangers.

The authors also performed genetic screening on a young girl to look for genetic underpinnings of this pronounced social behavior.

"We’ve known for many years that children with Williams syndrome are markedly more social than other children, in spite of the moderate mental retardation and physical problems that also are associated with the disorder," said Doyle. "Here we not only have shown hyper-social behavior as a hallmark symptom that follows a characteristic developmental course in Williams syndrome, but we may be closer to identifying the genes involved in regulating that behavior."

Williams syndrome is rare, occurring in only one in every 20,000 people. It arises from the deletion of no more than 20 genes from one chromosome of the seventh chromosome pair.

Virtually everyone with Williams syndrome has exactly the same set of genes missing. People with the disorder have characteristic facial and physical features, certain cardiovascular problems and mild to moderate mental retardation.

However, in addition to their very extroverted natures, as adults Williams patients also possess unusually adept language skills given their level of general cognitive abilities. Bellugi and her laboratory have been studying the syndrome for years in an effort to understand how language is processed in the brain and what genes may be involved.

Very rarely, an individual with Williams syndrome has a slightly smaller or larger gene deletion than is typical for the syndrome. The researchers analyzed the genetic deletion of a two-year-old girl with Williams syndrome who did not exhibit this especially outgoing behavior.

She was shy around strangers, and scored significantly lower on sociability measures, much more resembling 2-year-old children without Williams syndrome. It was found that this girl retained at least one gene that most people with the disorder have missing. This indicated that the gene (or genes) she retained might be altering the hyper-sociability usually observed among children with Williams syndrome.

"We don’t know at this point whether these genes are involved in regulating social behavior in the general population, or whether their involvement is specific to Williams syndrome," said Bellugi. "We will need to conduct tests in more patients who do not have all the gene deletions seen in typical Williams syndrome, and compare and contrast genetics and behavior."

The research was supported by grants from the National Institutes of Health, the James S. McDonnell Foundation, the Oak Tree Philanthropic Foundation, and the U.S. Department of Energy.

The Salk Institute for Biological Studies, located in La Jolla, Calif., is an independent nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health and conditions, and the training of future generations of researchers. Jonas Salk, M.D., founded the institute in 1960 with a gift of land from the City of San Diego and the financial support of the March of Dimes Birth Defects Foundation.

Andrew Porterfield | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>