Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Production of plant proteins of biopharmaceutical interest

20.08.2003


The advantages of production in plants



According to Navarre Public University lecturer, Angel Mingo, this novel system of protein production is highly advantageous, not only due to its reduced costs with respect to cell cultures in bioreactors, but also because the method is free of the health risks associated with animal cell culture.

Moreover, the technology involved is easily accessible and enables targeting the accumulation of protein to specific compartments and organs of the plant. Another advantage is the possibility of administering the protein orally as a food component, eliminating the need for extraction. Finally, amongst other advantages, the time invested is relatively short, protein yields are high and the method enables the assembly and production of multimeric proteins.


The technology of plastid transformation

This technology has been developed in the last decade and is, overall, the most powerful and advantageous, being based on the transformation of the plastoma (the genes contained in the plastids) of the plant cells.

The aim of the technique is to arrive at a homoplasmic state in the plastoma, a state achieved when, introducing the desired gene(s) in a stable manner, all the copies making up the plastoma are transformed so that, subsequently and functioning independently, the production of the desired protein is codified. The gene (DNA) to be transferred is introduced into the plastids with the aid of a specific plastid transformation vector. In order to access the interior of the plastids the transgene has to penetrate the plastid double membrane.

Results

With this technology a significant number of proteins have been produced. High protein yields have been achieved with tobacco leaves. In fact, this plant is currently the ideal one for plastid transformation, for the genomic knowledge of the plant, for its ability for regeneration in vitro and for its high biomass yields. Tobacco and potato plants have been used.

Contact :
Iñaki Casado Redin
Nafarroako Unibertsitate Publikoa
inaki.casado@unavarra.es
(+34) 948 16 97 82

Iñaki Casado Redin | Basque research
Further information:
http://www.unavarra.es

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>