Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue researchers expose ’docking bay’ for viral attack

19.08.2003


Imagine a virus and its cellular target as two spacecraft – the virus sporting a tiny docking bay that allows it to invade its victim. Purdue University researchers have taken a close-up picture of one virus’ docking bay, work that could have implications for both medicine and nanotechnology.


This is a close-up image of the T4 virus baseplate, which the virus uses to attach itself to its E. coli bacterium host. The 16 types of proteins that form the baseplate are color-coded. More than 150 total protein molecules make up the baseplate, a complex molecular machine that changes configuration when it bonds with the E. coli cell membrane. Further analysis of the baseplate could lead to advances in both medicine and nanotechnology. (Graphic/Purdue University Department of Biology)


Shown is an image of the T4 virus studied by Michael Rossmann’s group. The virus carries its genetic material in the head section, then injects it into the E. coli bacterium through its tail after the baseplate attaches itself to the cell membrane. (Graphic/Purdue University Department of Biology



Using advanced imaging techniques, an international team of biologists led by Michael Rossmann of Purdue, Vadim Mesyanzhinov in Moscow and Fumio Arisaka at the Tokyo Institute of Technology has analyzed the structure of part of the T4 virus, which commonly infects E. coli bacteria. The part they analyzed, called the baseplate, is a complex structure made of 16 types of proteins that allows T4 to attach itself to the surface of E. coli in order to inject its own deadly genetic material. Their work has produced the clearest picture ever obtained of the baseplate, which plays a critical role in the initial stages of viral infection.

"We now have a fairly complete picture of the baseplate, the part of the virus that latches onto its cellular victim," said Rossmann, who is Hanley Distinguished Professor of Biological Sciences in Purdue’s School of Science. "Armed with this knowledge, we should obtain a better understanding of how this virus injects its genetic material into its host. It could be the key to stopping the process – or even harnessing it to benefit humanity."


The paper appears in the latest issue (Sunday, 8/17) of Nature Structural Biology.

While T4 is perhaps not as well known as the viruses that cause the flu, it is an old friend of viral researchers as an invader of the E. coli bacterium, which itself can threaten human health. Viruses that attack bacteria, called bacteriophages, are readily studied because a virus that attacks a unicellular host can often be observed and manipulated more easily.

"Mesyanzhinov, Arisaka and I discussed the possibility of examining T4 in closer detail," said Rossmann. "It’s a very complicated structure consisting of more than 150 protein molecules, and we wanted to know how they were put together. So we decided to take a close look."

It had been common scientific knowledge that the baseplate was a complicated but beautiful mechanism, one which changed its conformation from a hexagon to a star shape as it formed the irrevocable bond between virus and bacterium. Analysis of its protein building blocks required the use of both electron microscopy, needed to resolve the shapes and relationships between the proteins, and X-ray crystallography, needed for high-resolution images of the atoms within them. Each of the three researchers contributed some of the technology necessary for the analysis, which eventually revealed the structure of the baseplate.

"There are several steps a virus takes to infect a host cell," Rossmann said. "Scientists have long known what the steps were, but no one had ever examined them on a molecular level before. This research should allow us to analyze the initial events in a viral attack. Such knowledge could be useful for targeting bacterial viruses to kill invading bacteria as an alternative to antibiotic compounds."

While viruses are not generally thought of as prospective friends to mankind, many attack the very bacteria that cause common human illnesses, giving them potential as antibiotics.

"T4 attacks E. coli, which is well known as a threat to human health," Rossmann said. "Many other bacteriophages also have structures similar to T4. If we could modify the proteins in the baseplate’s attachment fibers, it might enable T4 to destroy harmful bacteria. This research could be a step in that direction."

Nanotechnology applications also are possible.

"The baseplate of this virus is essentially a complex molecular machine," Rossmann said. "We have now obtained a clear picture of its structure, which has allowed us to suggest how it works. Building nanomachines will likely be easier if we can borrow some mechanisms already proven by nature."

Such applications are admittedly pie in the sky for the moment, and Rossmann said the most valuable result of the research is the fundamental knowledge it reveals about viruses.

"We now have a close-up image of the machinery that guides the steps taken when a virus infects a cell," he said. "We hope further analyses will show even greater detail."

This research was funded in part by grants from the National Science Foundation, the Howard Hughes Medical Institute and the Human Frontiers Science Program.

Rossmann’s team is associated with Purdue’s Markey Center for Structural Biology, which consists of laboratories that use a combination of cryoelectron microscopy, crystallography and molecular biology to elucidate the processes of viral entry, replication and pathogenesis.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Sources: Michael G. Rossmann, (765) 494-4911, mgr@indiana.bio.purdue.edu

Petr G. Leiman, (765) 494-4925, leiman@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Chad Boutin | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/030818.Rossmann.baseplate.html
http://www.nature.com/naturestructuralbiology

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>