Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue researchers expose ’docking bay’ for viral attack

19.08.2003


Imagine a virus and its cellular target as two spacecraft – the virus sporting a tiny docking bay that allows it to invade its victim. Purdue University researchers have taken a close-up picture of one virus’ docking bay, work that could have implications for both medicine and nanotechnology.


This is a close-up image of the T4 virus baseplate, which the virus uses to attach itself to its E. coli bacterium host. The 16 types of proteins that form the baseplate are color-coded. More than 150 total protein molecules make up the baseplate, a complex molecular machine that changes configuration when it bonds with the E. coli cell membrane. Further analysis of the baseplate could lead to advances in both medicine and nanotechnology. (Graphic/Purdue University Department of Biology)


Shown is an image of the T4 virus studied by Michael Rossmann’s group. The virus carries its genetic material in the head section, then injects it into the E. coli bacterium through its tail after the baseplate attaches itself to the cell membrane. (Graphic/Purdue University Department of Biology



Using advanced imaging techniques, an international team of biologists led by Michael Rossmann of Purdue, Vadim Mesyanzhinov in Moscow and Fumio Arisaka at the Tokyo Institute of Technology has analyzed the structure of part of the T4 virus, which commonly infects E. coli bacteria. The part they analyzed, called the baseplate, is a complex structure made of 16 types of proteins that allows T4 to attach itself to the surface of E. coli in order to inject its own deadly genetic material. Their work has produced the clearest picture ever obtained of the baseplate, which plays a critical role in the initial stages of viral infection.

"We now have a fairly complete picture of the baseplate, the part of the virus that latches onto its cellular victim," said Rossmann, who is Hanley Distinguished Professor of Biological Sciences in Purdue’s School of Science. "Armed with this knowledge, we should obtain a better understanding of how this virus injects its genetic material into its host. It could be the key to stopping the process – or even harnessing it to benefit humanity."


The paper appears in the latest issue (Sunday, 8/17) of Nature Structural Biology.

While T4 is perhaps not as well known as the viruses that cause the flu, it is an old friend of viral researchers as an invader of the E. coli bacterium, which itself can threaten human health. Viruses that attack bacteria, called bacteriophages, are readily studied because a virus that attacks a unicellular host can often be observed and manipulated more easily.

"Mesyanzhinov, Arisaka and I discussed the possibility of examining T4 in closer detail," said Rossmann. "It’s a very complicated structure consisting of more than 150 protein molecules, and we wanted to know how they were put together. So we decided to take a close look."

It had been common scientific knowledge that the baseplate was a complicated but beautiful mechanism, one which changed its conformation from a hexagon to a star shape as it formed the irrevocable bond between virus and bacterium. Analysis of its protein building blocks required the use of both electron microscopy, needed to resolve the shapes and relationships between the proteins, and X-ray crystallography, needed for high-resolution images of the atoms within them. Each of the three researchers contributed some of the technology necessary for the analysis, which eventually revealed the structure of the baseplate.

"There are several steps a virus takes to infect a host cell," Rossmann said. "Scientists have long known what the steps were, but no one had ever examined them on a molecular level before. This research should allow us to analyze the initial events in a viral attack. Such knowledge could be useful for targeting bacterial viruses to kill invading bacteria as an alternative to antibiotic compounds."

While viruses are not generally thought of as prospective friends to mankind, many attack the very bacteria that cause common human illnesses, giving them potential as antibiotics.

"T4 attacks E. coli, which is well known as a threat to human health," Rossmann said. "Many other bacteriophages also have structures similar to T4. If we could modify the proteins in the baseplate’s attachment fibers, it might enable T4 to destroy harmful bacteria. This research could be a step in that direction."

Nanotechnology applications also are possible.

"The baseplate of this virus is essentially a complex molecular machine," Rossmann said. "We have now obtained a clear picture of its structure, which has allowed us to suggest how it works. Building nanomachines will likely be easier if we can borrow some mechanisms already proven by nature."

Such applications are admittedly pie in the sky for the moment, and Rossmann said the most valuable result of the research is the fundamental knowledge it reveals about viruses.

"We now have a close-up image of the machinery that guides the steps taken when a virus infects a cell," he said. "We hope further analyses will show even greater detail."

This research was funded in part by grants from the National Science Foundation, the Howard Hughes Medical Institute and the Human Frontiers Science Program.

Rossmann’s team is associated with Purdue’s Markey Center for Structural Biology, which consists of laboratories that use a combination of cryoelectron microscopy, crystallography and molecular biology to elucidate the processes of viral entry, replication and pathogenesis.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Sources: Michael G. Rossmann, (765) 494-4911, mgr@indiana.bio.purdue.edu

Petr G. Leiman, (765) 494-4925, leiman@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Chad Boutin | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/030818.Rossmann.baseplate.html
http://www.nature.com/naturestructuralbiology

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>