Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decrypting the role of Cripto in tumor growth

18.08.2003


The cell-surface associated molecule Cripto is overexpressed in a wide range of epithelial cancers, yet little is known about the potential mechanisms by which Cripto expression might enhance tumor growth. A new study by Michele Sanicola and colleagues at Biogen Inc. in the August 15 issue of the Journal of Clinical Investigation reveals that binding of Cripto to the TGFbeta ligand Activin B can block Activin B-mediated suppression of cell proliferation. Furthermore, this study also demonstrates that antibody blockade of Cripto function may prove useful in the inhibition of tumorigenesis.



Cripto was first discovered 15 years ago and was suitably named for its mysterious lack of relationship to known proteins and signaling pathways. Since then Cripto has been shown to play an essential role in embryonic development. It has also been shown to act as a coreceptor for Nodal, a member of the TGFbeta family. Cripto appears to recruit Nodal to the Activin receptor complex to mediate transcriptional responses. However there remains no explanation for the widespread overexpression of Cripto in human epithelial cancers. In attempting to determine whether Cripto activity is essential for tumor growth and/or maintenance, and what role, if any, that Nodal plays in this interaction, Sanicola and colleagues have revealed that Activin signaling can be blocked by Cripto overexpression in many cell types. They go on demonstrate that monoclonal antibodies specific for Cripto are capable of inhibiting tumor cell growth in models of testicular and colon cancer, and that this correlates with the ability to inhibit Activin signaling.

The study suggests that Cripto overexpression may play an early role in cancer progression through the inhibition of the tumor supressing effects of Activin. In an accompanying commentary, Michael Shen from the University of Medicine and Dentistry in Piscataway, New Jersey, discusses some of the proposed mechanisms of this inhibition. "The exciting finding that antibody blockade of Cripto has a strong effect in xenograft models indicates that Cripto functions in a central pathway for cell proliferation and/or maintenance of the transformed state. While much more analysis is needed to decode the molecular mechanisms of Cripto function, the work now provides a glimmer of understanding as to the functions of this enigmatic protein in tumorigenesis".


Brooke Grindlinger | EurekAlert!
Further information:
http://www.jci.org/
http://www.the-jci.org/press/17788.pdf
http://www.the-jci.org/press/19546.pdf

More articles from Life Sciences:

nachricht The big clean up after stress
25.05.2018 | Julius-Maximilians-Universität Würzburg

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>