Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decrypting the role of Cripto in tumor growth

18.08.2003


The cell-surface associated molecule Cripto is overexpressed in a wide range of epithelial cancers, yet little is known about the potential mechanisms by which Cripto expression might enhance tumor growth. A new study by Michele Sanicola and colleagues at Biogen Inc. in the August 15 issue of the Journal of Clinical Investigation reveals that binding of Cripto to the TGFbeta ligand Activin B can block Activin B-mediated suppression of cell proliferation. Furthermore, this study also demonstrates that antibody blockade of Cripto function may prove useful in the inhibition of tumorigenesis.



Cripto was first discovered 15 years ago and was suitably named for its mysterious lack of relationship to known proteins and signaling pathways. Since then Cripto has been shown to play an essential role in embryonic development. It has also been shown to act as a coreceptor for Nodal, a member of the TGFbeta family. Cripto appears to recruit Nodal to the Activin receptor complex to mediate transcriptional responses. However there remains no explanation for the widespread overexpression of Cripto in human epithelial cancers. In attempting to determine whether Cripto activity is essential for tumor growth and/or maintenance, and what role, if any, that Nodal plays in this interaction, Sanicola and colleagues have revealed that Activin signaling can be blocked by Cripto overexpression in many cell types. They go on demonstrate that monoclonal antibodies specific for Cripto are capable of inhibiting tumor cell growth in models of testicular and colon cancer, and that this correlates with the ability to inhibit Activin signaling.

The study suggests that Cripto overexpression may play an early role in cancer progression through the inhibition of the tumor supressing effects of Activin. In an accompanying commentary, Michael Shen from the University of Medicine and Dentistry in Piscataway, New Jersey, discusses some of the proposed mechanisms of this inhibition. "The exciting finding that antibody blockade of Cripto has a strong effect in xenograft models indicates that Cripto functions in a central pathway for cell proliferation and/or maintenance of the transformed state. While much more analysis is needed to decode the molecular mechanisms of Cripto function, the work now provides a glimmer of understanding as to the functions of this enigmatic protein in tumorigenesis".


Brooke Grindlinger | EurekAlert!
Further information:
http://www.jci.org/
http://www.the-jci.org/press/17788.pdf
http://www.the-jci.org/press/19546.pdf

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>